Copied to
clipboard

?

G = C10.812- (1+4)order 320 = 26·5

36th non-split extension by C10 of 2- (1+4) acting via 2- (1+4)/C4○D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.812- (1+4), C10.602+ (1+4), C20⋊Q831C2, C4⋊C4.105D10, (C2×D4).97D10, C22⋊C4.26D10, C20.48D414C2, (C2×C10).195C24, (C2×C20).178C23, (C22×C4).256D10, C2.62(D46D10), C22.D4.3D5, Dic5.Q826C2, C20.17D4.10C2, (D4×C10).133C22, C23.D1029C2, C4⋊Dic5.226C22, (C22×C20).86C22, C23.128(C22×D5), C22.216(C23×D5), Dic5.14D430C2, C23.D5.41C22, (C22×C10).220C23, C52(C22.57C24), (C4×Dic5).130C22, (C2×Dic10).38C22, (C2×Dic5).100C23, C10.D4.40C22, C23.18D10.3C2, C2.42(D4.10D10), (C22×Dic5).128C22, (C2×C4).59(C22×D5), (C5×C4⋊C4).175C22, (C5×C22⋊C4).50C22, (C5×C22.D4).3C2, SmallGroup(320,1323)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.812- (1+4)
C1C5C10C2×C10C2×Dic5C22×Dic5Dic5.14D4 — C10.812- (1+4)
C5C2×C10 — C10.812- (1+4)

Subgroups: 614 in 196 conjugacy classes, 91 normal (27 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×13], C22, C22 [×6], C5, C2×C4, C2×C4 [×4], C2×C4 [×10], D4, Q8 [×3], C23 [×2], C10, C10 [×2], C10 [×2], C42 [×3], C22⋊C4, C22⋊C4 [×2], C22⋊C4 [×7], C4⋊C4 [×2], C4⋊C4 [×14], C22×C4, C22×C4, C2×D4, C2×Q8 [×3], Dic5 [×8], C20 [×5], C2×C10, C2×C10 [×6], C22⋊Q8 [×4], C22.D4, C22.D4, C4.4D4, C42.C2 [×2], C422C2 [×4], C4⋊Q8 [×2], Dic10 [×3], C2×Dic5 [×8], C2×Dic5, C2×C20, C2×C20 [×4], C2×C20, C5×D4, C22×C10 [×2], C22.57C24, C4×Dic5, C4×Dic5 [×2], C10.D4 [×10], C4⋊Dic5 [×4], C23.D5, C23.D5 [×6], C5×C22⋊C4, C5×C22⋊C4 [×2], C5×C4⋊C4 [×2], C2×Dic10, C2×Dic10 [×2], C22×Dic5, C22×C20, D4×C10, Dic5.14D4 [×2], C23.D10 [×4], C20⋊Q8 [×2], Dic5.Q8 [×2], C20.48D4 [×2], C23.18D10, C20.17D4, C5×C22.D4, C10.812- (1+4)

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C24, D10 [×7], 2+ (1+4), 2- (1+4) [×2], C22×D5 [×7], C22.57C24, C23×D5, D46D10, D4.10D10 [×2], C10.812- (1+4)

Generators and relations
 G = < a,b,c,d,e | a10=b4=1, c2=a5, d2=e2=a5b2, bab-1=cac-1=eae-1=a-1, ad=da, cbc-1=b-1, bd=db, ebe-1=a5b, dcd-1=a5c, ce=ec, ede-1=a5b2d >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 150 25 138)(2 149 26 137)(3 148 27 136)(4 147 28 135)(5 146 29 134)(6 145 30 133)(7 144 21 132)(8 143 22 131)(9 142 23 140)(10 141 24 139)(11 31 154 44)(12 40 155 43)(13 39 156 42)(14 38 157 41)(15 37 158 50)(16 36 159 49)(17 35 160 48)(18 34 151 47)(19 33 152 46)(20 32 153 45)(51 99 64 101)(52 98 65 110)(53 97 66 109)(54 96 67 108)(55 95 68 107)(56 94 69 106)(57 93 70 105)(58 92 61 104)(59 91 62 103)(60 100 63 102)(71 126 85 114)(72 125 86 113)(73 124 87 112)(74 123 88 111)(75 122 89 120)(76 121 90 119)(77 130 81 118)(78 129 82 117)(79 128 83 116)(80 127 84 115)
(1 118 6 113)(2 117 7 112)(3 116 8 111)(4 115 9 120)(5 114 10 119)(11 64 16 69)(12 63 17 68)(13 62 18 67)(14 61 19 66)(15 70 20 65)(21 124 26 129)(22 123 27 128)(23 122 28 127)(24 121 29 126)(25 130 30 125)(31 99 36 94)(32 98 37 93)(33 97 38 92)(34 96 39 91)(35 95 40 100)(41 104 46 109)(42 103 47 108)(43 102 48 107)(44 101 49 106)(45 110 50 105)(51 159 56 154)(52 158 57 153)(53 157 58 152)(54 156 59 151)(55 155 60 160)(71 139 76 134)(72 138 77 133)(73 137 78 132)(74 136 79 131)(75 135 80 140)(81 145 86 150)(82 144 87 149)(83 143 88 148)(84 142 89 147)(85 141 90 146)
(1 45 30 37)(2 46 21 38)(3 47 22 39)(4 48 23 40)(5 49 24 31)(6 50 25 32)(7 41 26 33)(8 42 27 34)(9 43 28 35)(10 44 29 36)(11 134 159 141)(12 135 160 142)(13 136 151 143)(14 137 152 144)(15 138 153 145)(16 139 154 146)(17 140 155 147)(18 131 156 148)(19 132 157 149)(20 133 158 150)(51 90 69 71)(52 81 70 72)(53 82 61 73)(54 83 62 74)(55 84 63 75)(56 85 64 76)(57 86 65 77)(58 87 66 78)(59 88 67 79)(60 89 68 80)(91 111 108 128)(92 112 109 129)(93 113 110 130)(94 114 101 121)(95 115 102 122)(96 116 103 123)(97 117 104 124)(98 118 105 125)(99 119 106 126)(100 120 107 127)
(1 153 30 15)(2 152 21 14)(3 151 22 13)(4 160 23 12)(5 159 24 11)(6 158 25 20)(7 157 26 19)(8 156 27 18)(9 155 28 17)(10 154 29 16)(31 141 49 134)(32 150 50 133)(33 149 41 132)(34 148 42 131)(35 147 43 140)(36 146 44 139)(37 145 45 138)(38 144 46 137)(39 143 47 136)(40 142 48 135)(51 126 69 119)(52 125 70 118)(53 124 61 117)(54 123 62 116)(55 122 63 115)(56 121 64 114)(57 130 65 113)(58 129 66 112)(59 128 67 111)(60 127 68 120)(71 99 90 106)(72 98 81 105)(73 97 82 104)(74 96 83 103)(75 95 84 102)(76 94 85 101)(77 93 86 110)(78 92 87 109)(79 91 88 108)(80 100 89 107)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,150,25,138)(2,149,26,137)(3,148,27,136)(4,147,28,135)(5,146,29,134)(6,145,30,133)(7,144,21,132)(8,143,22,131)(9,142,23,140)(10,141,24,139)(11,31,154,44)(12,40,155,43)(13,39,156,42)(14,38,157,41)(15,37,158,50)(16,36,159,49)(17,35,160,48)(18,34,151,47)(19,33,152,46)(20,32,153,45)(51,99,64,101)(52,98,65,110)(53,97,66,109)(54,96,67,108)(55,95,68,107)(56,94,69,106)(57,93,70,105)(58,92,61,104)(59,91,62,103)(60,100,63,102)(71,126,85,114)(72,125,86,113)(73,124,87,112)(74,123,88,111)(75,122,89,120)(76,121,90,119)(77,130,81,118)(78,129,82,117)(79,128,83,116)(80,127,84,115), (1,118,6,113)(2,117,7,112)(3,116,8,111)(4,115,9,120)(5,114,10,119)(11,64,16,69)(12,63,17,68)(13,62,18,67)(14,61,19,66)(15,70,20,65)(21,124,26,129)(22,123,27,128)(23,122,28,127)(24,121,29,126)(25,130,30,125)(31,99,36,94)(32,98,37,93)(33,97,38,92)(34,96,39,91)(35,95,40,100)(41,104,46,109)(42,103,47,108)(43,102,48,107)(44,101,49,106)(45,110,50,105)(51,159,56,154)(52,158,57,153)(53,157,58,152)(54,156,59,151)(55,155,60,160)(71,139,76,134)(72,138,77,133)(73,137,78,132)(74,136,79,131)(75,135,80,140)(81,145,86,150)(82,144,87,149)(83,143,88,148)(84,142,89,147)(85,141,90,146), (1,45,30,37)(2,46,21,38)(3,47,22,39)(4,48,23,40)(5,49,24,31)(6,50,25,32)(7,41,26,33)(8,42,27,34)(9,43,28,35)(10,44,29,36)(11,134,159,141)(12,135,160,142)(13,136,151,143)(14,137,152,144)(15,138,153,145)(16,139,154,146)(17,140,155,147)(18,131,156,148)(19,132,157,149)(20,133,158,150)(51,90,69,71)(52,81,70,72)(53,82,61,73)(54,83,62,74)(55,84,63,75)(56,85,64,76)(57,86,65,77)(58,87,66,78)(59,88,67,79)(60,89,68,80)(91,111,108,128)(92,112,109,129)(93,113,110,130)(94,114,101,121)(95,115,102,122)(96,116,103,123)(97,117,104,124)(98,118,105,125)(99,119,106,126)(100,120,107,127), (1,153,30,15)(2,152,21,14)(3,151,22,13)(4,160,23,12)(5,159,24,11)(6,158,25,20)(7,157,26,19)(8,156,27,18)(9,155,28,17)(10,154,29,16)(31,141,49,134)(32,150,50,133)(33,149,41,132)(34,148,42,131)(35,147,43,140)(36,146,44,139)(37,145,45,138)(38,144,46,137)(39,143,47,136)(40,142,48,135)(51,126,69,119)(52,125,70,118)(53,124,61,117)(54,123,62,116)(55,122,63,115)(56,121,64,114)(57,130,65,113)(58,129,66,112)(59,128,67,111)(60,127,68,120)(71,99,90,106)(72,98,81,105)(73,97,82,104)(74,96,83,103)(75,95,84,102)(76,94,85,101)(77,93,86,110)(78,92,87,109)(79,91,88,108)(80,100,89,107)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,150,25,138)(2,149,26,137)(3,148,27,136)(4,147,28,135)(5,146,29,134)(6,145,30,133)(7,144,21,132)(8,143,22,131)(9,142,23,140)(10,141,24,139)(11,31,154,44)(12,40,155,43)(13,39,156,42)(14,38,157,41)(15,37,158,50)(16,36,159,49)(17,35,160,48)(18,34,151,47)(19,33,152,46)(20,32,153,45)(51,99,64,101)(52,98,65,110)(53,97,66,109)(54,96,67,108)(55,95,68,107)(56,94,69,106)(57,93,70,105)(58,92,61,104)(59,91,62,103)(60,100,63,102)(71,126,85,114)(72,125,86,113)(73,124,87,112)(74,123,88,111)(75,122,89,120)(76,121,90,119)(77,130,81,118)(78,129,82,117)(79,128,83,116)(80,127,84,115), (1,118,6,113)(2,117,7,112)(3,116,8,111)(4,115,9,120)(5,114,10,119)(11,64,16,69)(12,63,17,68)(13,62,18,67)(14,61,19,66)(15,70,20,65)(21,124,26,129)(22,123,27,128)(23,122,28,127)(24,121,29,126)(25,130,30,125)(31,99,36,94)(32,98,37,93)(33,97,38,92)(34,96,39,91)(35,95,40,100)(41,104,46,109)(42,103,47,108)(43,102,48,107)(44,101,49,106)(45,110,50,105)(51,159,56,154)(52,158,57,153)(53,157,58,152)(54,156,59,151)(55,155,60,160)(71,139,76,134)(72,138,77,133)(73,137,78,132)(74,136,79,131)(75,135,80,140)(81,145,86,150)(82,144,87,149)(83,143,88,148)(84,142,89,147)(85,141,90,146), (1,45,30,37)(2,46,21,38)(3,47,22,39)(4,48,23,40)(5,49,24,31)(6,50,25,32)(7,41,26,33)(8,42,27,34)(9,43,28,35)(10,44,29,36)(11,134,159,141)(12,135,160,142)(13,136,151,143)(14,137,152,144)(15,138,153,145)(16,139,154,146)(17,140,155,147)(18,131,156,148)(19,132,157,149)(20,133,158,150)(51,90,69,71)(52,81,70,72)(53,82,61,73)(54,83,62,74)(55,84,63,75)(56,85,64,76)(57,86,65,77)(58,87,66,78)(59,88,67,79)(60,89,68,80)(91,111,108,128)(92,112,109,129)(93,113,110,130)(94,114,101,121)(95,115,102,122)(96,116,103,123)(97,117,104,124)(98,118,105,125)(99,119,106,126)(100,120,107,127), (1,153,30,15)(2,152,21,14)(3,151,22,13)(4,160,23,12)(5,159,24,11)(6,158,25,20)(7,157,26,19)(8,156,27,18)(9,155,28,17)(10,154,29,16)(31,141,49,134)(32,150,50,133)(33,149,41,132)(34,148,42,131)(35,147,43,140)(36,146,44,139)(37,145,45,138)(38,144,46,137)(39,143,47,136)(40,142,48,135)(51,126,69,119)(52,125,70,118)(53,124,61,117)(54,123,62,116)(55,122,63,115)(56,121,64,114)(57,130,65,113)(58,129,66,112)(59,128,67,111)(60,127,68,120)(71,99,90,106)(72,98,81,105)(73,97,82,104)(74,96,83,103)(75,95,84,102)(76,94,85,101)(77,93,86,110)(78,92,87,109)(79,91,88,108)(80,100,89,107) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,150,25,138),(2,149,26,137),(3,148,27,136),(4,147,28,135),(5,146,29,134),(6,145,30,133),(7,144,21,132),(8,143,22,131),(9,142,23,140),(10,141,24,139),(11,31,154,44),(12,40,155,43),(13,39,156,42),(14,38,157,41),(15,37,158,50),(16,36,159,49),(17,35,160,48),(18,34,151,47),(19,33,152,46),(20,32,153,45),(51,99,64,101),(52,98,65,110),(53,97,66,109),(54,96,67,108),(55,95,68,107),(56,94,69,106),(57,93,70,105),(58,92,61,104),(59,91,62,103),(60,100,63,102),(71,126,85,114),(72,125,86,113),(73,124,87,112),(74,123,88,111),(75,122,89,120),(76,121,90,119),(77,130,81,118),(78,129,82,117),(79,128,83,116),(80,127,84,115)], [(1,118,6,113),(2,117,7,112),(3,116,8,111),(4,115,9,120),(5,114,10,119),(11,64,16,69),(12,63,17,68),(13,62,18,67),(14,61,19,66),(15,70,20,65),(21,124,26,129),(22,123,27,128),(23,122,28,127),(24,121,29,126),(25,130,30,125),(31,99,36,94),(32,98,37,93),(33,97,38,92),(34,96,39,91),(35,95,40,100),(41,104,46,109),(42,103,47,108),(43,102,48,107),(44,101,49,106),(45,110,50,105),(51,159,56,154),(52,158,57,153),(53,157,58,152),(54,156,59,151),(55,155,60,160),(71,139,76,134),(72,138,77,133),(73,137,78,132),(74,136,79,131),(75,135,80,140),(81,145,86,150),(82,144,87,149),(83,143,88,148),(84,142,89,147),(85,141,90,146)], [(1,45,30,37),(2,46,21,38),(3,47,22,39),(4,48,23,40),(5,49,24,31),(6,50,25,32),(7,41,26,33),(8,42,27,34),(9,43,28,35),(10,44,29,36),(11,134,159,141),(12,135,160,142),(13,136,151,143),(14,137,152,144),(15,138,153,145),(16,139,154,146),(17,140,155,147),(18,131,156,148),(19,132,157,149),(20,133,158,150),(51,90,69,71),(52,81,70,72),(53,82,61,73),(54,83,62,74),(55,84,63,75),(56,85,64,76),(57,86,65,77),(58,87,66,78),(59,88,67,79),(60,89,68,80),(91,111,108,128),(92,112,109,129),(93,113,110,130),(94,114,101,121),(95,115,102,122),(96,116,103,123),(97,117,104,124),(98,118,105,125),(99,119,106,126),(100,120,107,127)], [(1,153,30,15),(2,152,21,14),(3,151,22,13),(4,160,23,12),(5,159,24,11),(6,158,25,20),(7,157,26,19),(8,156,27,18),(9,155,28,17),(10,154,29,16),(31,141,49,134),(32,150,50,133),(33,149,41,132),(34,148,42,131),(35,147,43,140),(36,146,44,139),(37,145,45,138),(38,144,46,137),(39,143,47,136),(40,142,48,135),(51,126,69,119),(52,125,70,118),(53,124,61,117),(54,123,62,116),(55,122,63,115),(56,121,64,114),(57,130,65,113),(58,129,66,112),(59,128,67,111),(60,127,68,120),(71,99,90,106),(72,98,81,105),(73,97,82,104),(74,96,83,103),(75,95,84,102),(76,94,85,101),(77,93,86,110),(78,92,87,109),(79,91,88,108),(80,100,89,107)])

Matrix representation G ⊆ GL8(𝔽41)

3535000000
640000000
000350000
007340000
000040000
000004000
000000400
000000040
,
3927000000
152000000
0028390000
003130000
00001501537
00001502626
000015392839
00000132839
,
27393330000
37143950000
312523140000
37359180000
0000151500
0000152600
0000028213
000015282839
,
4003200000
0401200000
401100000
396010000
000040200
00000100
000040101
000040110
,
2142180000
26396120000
0028390000
003130000
00001503715
00001502626
000015283928
0000023928

G:=sub<GL(8,GF(41))| [35,6,0,0,0,0,0,0,35,40,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,35,34,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[39,15,0,0,0,0,0,0,27,2,0,0,0,0,0,0,0,0,28,3,0,0,0,0,0,0,39,13,0,0,0,0,0,0,0,0,15,15,15,0,0,0,0,0,0,0,39,13,0,0,0,0,15,26,28,28,0,0,0,0,37,26,39,39],[27,37,31,37,0,0,0,0,39,14,25,35,0,0,0,0,3,39,23,9,0,0,0,0,33,5,14,18,0,0,0,0,0,0,0,0,15,15,0,15,0,0,0,0,15,26,28,28,0,0,0,0,0,0,2,28,0,0,0,0,0,0,13,39],[40,0,40,39,0,0,0,0,0,40,1,6,0,0,0,0,3,1,1,0,0,0,0,0,20,20,0,1,0,0,0,0,0,0,0,0,40,0,40,40,0,0,0,0,2,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[2,26,0,0,0,0,0,0,14,39,0,0,0,0,0,0,21,6,28,3,0,0,0,0,8,12,39,13,0,0,0,0,0,0,0,0,15,15,15,0,0,0,0,0,0,0,28,2,0,0,0,0,37,26,39,39,0,0,0,0,15,26,28,28] >;

47 conjugacy classes

class 1 2A2B2C2D2E4A···4E4F···4M5A5B10A···10F10G10H10I10J10K10L20A···20H20I···20N
order1222224···44···45510···1010101010101020···2020···20
size1111444···420···20222···24444884···48···8

47 irreducible representations

dim111111111222224444
type+++++++++++++++--
imageC1C2C2C2C2C2C2C2C2D5D10D10D10D102+ (1+4)2- (1+4)D46D10D4.10D10
kernelC10.812- (1+4)Dic5.14D4C23.D10C20⋊Q8Dic5.Q8C20.48D4C23.18D10C20.17D4C5×C22.D4C22.D4C22⋊C4C4⋊C4C22×C4C2×D4C10C10C2C2
# reps124222111264221248

In GAP, Magma, Sage, TeX

C_{10}._{81}2_-^{(1+4)}
% in TeX

G:=Group("C10.81ES-(2,2)");
// GroupNames label

G:=SmallGroup(320,1323);
// by ID

G=gap.SmallGroup(320,1323);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,758,219,184,1571,570,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=1,c^2=a^5,d^2=e^2=a^5*b^2,b*a*b^-1=c*a*c^-1=e*a*e^-1=a^-1,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,e*b*e^-1=a^5*b,d*c*d^-1=a^5*c,c*e=e*c,e*d*e^-1=a^5*b^2*d>;
// generators/relations

׿
×
𝔽