Copied to
clipboard

?

G = C203M4(2)  order 320 = 26·5

1st semidirect product of C20 and M4(2) acting via M4(2)/C4=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C203M4(2), C42.13F5, (C4×C20).5C4, C20⋊C87C2, C4.9(C4⋊F5), C42(C4.F5), (C4×D5).78D4, C20.16(C4⋊C4), (C4×D5).20Q8, Dic5.9(C2×Q8), D10.25(C4⋊C4), C51(C4⋊M4(2)), Dic5.27(C2×D4), (C4×Dic5).35C4, (D5×C42).18C2, C10.6(C2×M4(2)), C22.62(C22×F5), (C4×Dic5).345C22, (C2×Dic5).317C23, C2.6(C2×C4⋊F5), C10.2(C2×C4⋊C4), (C2×C4×D5).36C4, C2.6(C2×C4.F5), (C2×C5⋊C8).1C22, (C2×C4.F5).7C2, (C2×C4).132(C2×F5), (C2×C20).121(C2×C4), (C2×C4×D5).390C22, (C2×C10).19(C22×C4), (C2×Dic5).167(C2×C4), (C22×D5).119(C2×C4), SmallGroup(320,1019)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C203M4(2)
C1C5C10Dic5C2×Dic5C2×C5⋊C8C20⋊C8 — C203M4(2)
C5C2×C10 — C203M4(2)

Subgroups: 426 in 126 conjugacy classes, 60 normal (18 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×6], C4 [×4], C22, C22 [×4], C5, C8 [×4], C2×C4, C2×C4 [×2], C2×C4 [×11], C23, D5 [×2], C10, C10 [×2], C42, C42 [×3], C2×C8 [×4], M4(2) [×4], C22×C4 [×3], Dic5 [×2], Dic5 [×2], C20 [×6], D10 [×2], D10 [×2], C2×C10, C4⋊C8 [×4], C2×C42, C2×M4(2) [×2], C5⋊C8 [×4], C4×D5 [×4], C4×D5 [×4], C2×Dic5, C2×Dic5 [×2], C2×C20, C2×C20 [×2], C22×D5, C4⋊M4(2), C4×Dic5, C4×Dic5 [×2], C4×C20, C4.F5 [×4], C2×C5⋊C8 [×4], C2×C4×D5, C2×C4×D5 [×2], C20⋊C8 [×4], D5×C42, C2×C4.F5 [×2], C203M4(2)

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×2], Q8 [×2], C23, C4⋊C4 [×4], M4(2) [×4], C22×C4, C2×D4, C2×Q8, F5, C2×C4⋊C4, C2×M4(2) [×2], C2×F5 [×3], C4⋊M4(2), C4.F5 [×4], C4⋊F5 [×2], C22×F5, C2×C4.F5 [×2], C2×C4⋊F5, C203M4(2)

Generators and relations
 G = < a,b,c | a20=b8=c2=1, bab-1=a7, cac=a9, cbc=b5 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 25 61 83 136 143 119 54)(2 28 70 90 137 146 108 41)(3 31 79 97 138 149 117 48)(4 34 68 84 139 152 106 55)(5 37 77 91 140 155 115 42)(6 40 66 98 121 158 104 49)(7 23 75 85 122 141 113 56)(8 26 64 92 123 144 102 43)(9 29 73 99 124 147 111 50)(10 32 62 86 125 150 120 57)(11 35 71 93 126 153 109 44)(12 38 80 100 127 156 118 51)(13 21 69 87 128 159 107 58)(14 24 78 94 129 142 116 45)(15 27 67 81 130 145 105 52)(16 30 76 88 131 148 114 59)(17 33 65 95 132 151 103 46)(18 36 74 82 133 154 112 53)(19 39 63 89 134 157 101 60)(20 22 72 96 135 160 110 47)
(2 10)(3 19)(4 8)(5 17)(7 15)(9 13)(12 20)(14 18)(21 147)(22 156)(23 145)(24 154)(25 143)(26 152)(27 141)(28 150)(29 159)(30 148)(31 157)(32 146)(33 155)(34 144)(35 153)(36 142)(37 151)(38 160)(39 149)(40 158)(41 86)(42 95)(43 84)(44 93)(45 82)(46 91)(47 100)(48 89)(49 98)(50 87)(51 96)(52 85)(53 94)(54 83)(55 92)(56 81)(57 90)(58 99)(59 88)(60 97)(62 70)(63 79)(64 68)(65 77)(67 75)(69 73)(72 80)(74 78)(101 117)(102 106)(103 115)(105 113)(107 111)(108 120)(110 118)(112 116)(122 130)(123 139)(124 128)(125 137)(127 135)(129 133)(132 140)(134 138)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,25,61,83,136,143,119,54)(2,28,70,90,137,146,108,41)(3,31,79,97,138,149,117,48)(4,34,68,84,139,152,106,55)(5,37,77,91,140,155,115,42)(6,40,66,98,121,158,104,49)(7,23,75,85,122,141,113,56)(8,26,64,92,123,144,102,43)(9,29,73,99,124,147,111,50)(10,32,62,86,125,150,120,57)(11,35,71,93,126,153,109,44)(12,38,80,100,127,156,118,51)(13,21,69,87,128,159,107,58)(14,24,78,94,129,142,116,45)(15,27,67,81,130,145,105,52)(16,30,76,88,131,148,114,59)(17,33,65,95,132,151,103,46)(18,36,74,82,133,154,112,53)(19,39,63,89,134,157,101,60)(20,22,72,96,135,160,110,47), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,147)(22,156)(23,145)(24,154)(25,143)(26,152)(27,141)(28,150)(29,159)(30,148)(31,157)(32,146)(33,155)(34,144)(35,153)(36,142)(37,151)(38,160)(39,149)(40,158)(41,86)(42,95)(43,84)(44,93)(45,82)(46,91)(47,100)(48,89)(49,98)(50,87)(51,96)(52,85)(53,94)(54,83)(55,92)(56,81)(57,90)(58,99)(59,88)(60,97)(62,70)(63,79)(64,68)(65,77)(67,75)(69,73)(72,80)(74,78)(101,117)(102,106)(103,115)(105,113)(107,111)(108,120)(110,118)(112,116)(122,130)(123,139)(124,128)(125,137)(127,135)(129,133)(132,140)(134,138)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,25,61,83,136,143,119,54)(2,28,70,90,137,146,108,41)(3,31,79,97,138,149,117,48)(4,34,68,84,139,152,106,55)(5,37,77,91,140,155,115,42)(6,40,66,98,121,158,104,49)(7,23,75,85,122,141,113,56)(8,26,64,92,123,144,102,43)(9,29,73,99,124,147,111,50)(10,32,62,86,125,150,120,57)(11,35,71,93,126,153,109,44)(12,38,80,100,127,156,118,51)(13,21,69,87,128,159,107,58)(14,24,78,94,129,142,116,45)(15,27,67,81,130,145,105,52)(16,30,76,88,131,148,114,59)(17,33,65,95,132,151,103,46)(18,36,74,82,133,154,112,53)(19,39,63,89,134,157,101,60)(20,22,72,96,135,160,110,47), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,147)(22,156)(23,145)(24,154)(25,143)(26,152)(27,141)(28,150)(29,159)(30,148)(31,157)(32,146)(33,155)(34,144)(35,153)(36,142)(37,151)(38,160)(39,149)(40,158)(41,86)(42,95)(43,84)(44,93)(45,82)(46,91)(47,100)(48,89)(49,98)(50,87)(51,96)(52,85)(53,94)(54,83)(55,92)(56,81)(57,90)(58,99)(59,88)(60,97)(62,70)(63,79)(64,68)(65,77)(67,75)(69,73)(72,80)(74,78)(101,117)(102,106)(103,115)(105,113)(107,111)(108,120)(110,118)(112,116)(122,130)(123,139)(124,128)(125,137)(127,135)(129,133)(132,140)(134,138) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,25,61,83,136,143,119,54),(2,28,70,90,137,146,108,41),(3,31,79,97,138,149,117,48),(4,34,68,84,139,152,106,55),(5,37,77,91,140,155,115,42),(6,40,66,98,121,158,104,49),(7,23,75,85,122,141,113,56),(8,26,64,92,123,144,102,43),(9,29,73,99,124,147,111,50),(10,32,62,86,125,150,120,57),(11,35,71,93,126,153,109,44),(12,38,80,100,127,156,118,51),(13,21,69,87,128,159,107,58),(14,24,78,94,129,142,116,45),(15,27,67,81,130,145,105,52),(16,30,76,88,131,148,114,59),(17,33,65,95,132,151,103,46),(18,36,74,82,133,154,112,53),(19,39,63,89,134,157,101,60),(20,22,72,96,135,160,110,47)], [(2,10),(3,19),(4,8),(5,17),(7,15),(9,13),(12,20),(14,18),(21,147),(22,156),(23,145),(24,154),(25,143),(26,152),(27,141),(28,150),(29,159),(30,148),(31,157),(32,146),(33,155),(34,144),(35,153),(36,142),(37,151),(38,160),(39,149),(40,158),(41,86),(42,95),(43,84),(44,93),(45,82),(46,91),(47,100),(48,89),(49,98),(50,87),(51,96),(52,85),(53,94),(54,83),(55,92),(56,81),(57,90),(58,99),(59,88),(60,97),(62,70),(63,79),(64,68),(65,77),(67,75),(69,73),(72,80),(74,78),(101,117),(102,106),(103,115),(105,113),(107,111),(108,120),(110,118),(112,116),(122,130),(123,139),(124,128),(125,137),(127,135),(129,133),(132,140),(134,138)])

Matrix representation G ⊆ GL6(𝔽41)

120000
40400000
000100
00403500
000016
0000356
,
3990000
2720000
000016
0000040
0032000
0003200
,
4000000
0400000
001600
0004000
00004035
000001

G:=sub<GL(6,GF(41))| [1,40,0,0,0,0,2,40,0,0,0,0,0,0,0,40,0,0,0,0,1,35,0,0,0,0,0,0,1,35,0,0,0,0,6,6],[39,27,0,0,0,0,9,2,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,1,0,0,0,0,0,6,40,0,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,6,40,0,0,0,0,0,0,40,0,0,0,0,0,35,1] >;

44 conjugacy classes

class 1 2A2B2C2D2E4A···4F4G4H4I4J4K4L4M4N 5 8A···8H10A10B10C20A···20L
order1222224···44444444458···810101020···20
size111110102···2555510101010420···204444···4

44 irreducible representations

dim11111112224444
type+++++-++
imageC1C2C2C2C4C4C4D4Q8M4(2)F5C2×F5C4.F5C4⋊F5
kernelC203M4(2)C20⋊C8D5×C42C2×C4.F5C4×Dic5C4×C20C2×C4×D5C4×D5C4×D5C20C42C2×C4C4C4
# reps14122242281384

In GAP, Magma, Sage, TeX

C_{20}\rtimes_3M_{4(2)}
% in TeX

G:=Group("C20:3M4(2)");
// GroupNames label

G:=SmallGroup(320,1019);
// by ID

G=gap.SmallGroup(320,1019);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,253,120,758,184,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c|a^20=b^8=c^2=1,b*a*b^-1=a^7,c*a*c=a^9,c*b*c=b^5>;
// generators/relations

׿
×
𝔽