Copied to
clipboard

G = C2×C20.46D4order 320 = 26·5

Direct product of C2 and C20.46D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C20.46D4, M4(2)⋊22D10, C4.65(C2×D20), (C2×C4).49D20, (C2×D20).27C4, C20.416(C2×D4), (C2×C20).172D4, (C23×D5).3C4, C23.55(C4×D5), C102(C4.D4), (C2×M4(2))⋊10D5, (C10×M4(2))⋊18C2, (C2×C20).416C23, (C22×D20).15C2, (C22×C4).138D10, C4.Dic521C22, C4.28(D10⋊C4), C20.100(C22⋊C4), (C2×D20).258C22, (C5×M4(2))⋊34C22, (C22×C20).187C22, C22.50(D10⋊C4), C54(C2×C4.D4), (C2×C4).52(C4×D5), C22.20(C2×C4×D5), C4.109(C2×C5⋊D4), (C2×C20).280(C2×C4), C10.98(C2×C22⋊C4), (C2×C4.Dic5)⋊15C2, (C22×D5).5(C2×C4), C2.29(C2×D10⋊C4), (C2×C4).256(C5⋊D4), (C2×C4).120(C22×D5), (C22×C10).138(C2×C4), (C2×C10).115(C22×C4), (C2×C10).129(C22⋊C4), SmallGroup(320,757)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×C20.46D4
C1C5C10C20C2×C20C2×D20C22×D20 — C2×C20.46D4
C5C10C2×C10 — C2×C20.46D4
C1C22C22×C4C2×M4(2)

Generators and relations for C2×C20.46D4
 G = < a,b,c,d | a2=b20=d2=1, c4=b10, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=b15c3 >

Subgroups: 958 in 186 conjugacy classes, 63 normal (39 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×4], C22 [×3], C22 [×18], C5, C8 [×4], C2×C4 [×6], D4 [×8], C23, C23 [×12], D5 [×4], C10, C10 [×2], C10 [×2], C2×C8 [×2], M4(2) [×2], M4(2) [×4], C22×C4, C2×D4 [×8], C24 [×2], C20 [×4], D10 [×16], C2×C10 [×3], C2×C10 [×2], C4.D4 [×4], C2×M4(2), C2×M4(2), C22×D4, C52C8 [×2], C40 [×2], D20 [×8], C2×C20 [×6], C22×D5 [×4], C22×D5 [×8], C22×C10, C2×C4.D4, C2×C52C8, C4.Dic5 [×2], C4.Dic5, C2×C40, C5×M4(2) [×2], C5×M4(2), C2×D20 [×4], C2×D20 [×4], C22×C20, C23×D5 [×2], C20.46D4 [×4], C2×C4.Dic5, C10×M4(2), C22×D20, C2×C20.46D4
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×4], C23, D5, C22⋊C4 [×4], C22×C4, C2×D4 [×2], D10 [×3], C4.D4 [×2], C2×C22⋊C4, C4×D5 [×2], D20 [×2], C5⋊D4 [×2], C22×D5, C2×C4.D4, D10⋊C4 [×4], C2×C4×D5, C2×D20, C2×C5⋊D4, C20.46D4 [×2], C2×D10⋊C4, C2×C20.46D4

Smallest permutation representation of C2×C20.46D4
On 80 points
Generators in S80
(1 78)(2 79)(3 80)(4 61)(5 62)(6 63)(7 64)(8 65)(9 66)(10 67)(11 68)(12 69)(13 70)(14 71)(15 72)(16 73)(17 74)(18 75)(19 76)(20 77)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 48 73 25 11 58 63 35)(2 47 74 24 12 57 64 34)(3 46 75 23 13 56 65 33)(4 45 76 22 14 55 66 32)(5 44 77 21 15 54 67 31)(6 43 78 40 16 53 68 30)(7 42 79 39 17 52 69 29)(8 41 80 38 18 51 70 28)(9 60 61 37 19 50 71 27)(10 59 62 36 20 49 72 26)
(1 73)(2 72)(3 71)(4 70)(5 69)(6 68)(7 67)(8 66)(9 65)(10 64)(11 63)(12 62)(13 61)(14 80)(15 79)(16 78)(17 77)(18 76)(19 75)(20 74)(21 34)(22 33)(23 32)(24 31)(25 30)(26 29)(27 28)(35 40)(36 39)(37 38)(41 50)(42 49)(43 48)(44 47)(45 46)(51 60)(52 59)(53 58)(54 57)(55 56)

G:=sub<Sym(80)| (1,78)(2,79)(3,80)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,73)(17,74)(18,75)(19,76)(20,77)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,48,73,25,11,58,63,35)(2,47,74,24,12,57,64,34)(3,46,75,23,13,56,65,33)(4,45,76,22,14,55,66,32)(5,44,77,21,15,54,67,31)(6,43,78,40,16,53,68,30)(7,42,79,39,17,52,69,29)(8,41,80,38,18,51,70,28)(9,60,61,37,19,50,71,27)(10,59,62,36,20,49,72,26), (1,73)(2,72)(3,71)(4,70)(5,69)(6,68)(7,67)(8,66)(9,65)(10,64)(11,63)(12,62)(13,61)(14,80)(15,79)(16,78)(17,77)(18,76)(19,75)(20,74)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,28)(35,40)(36,39)(37,38)(41,50)(42,49)(43,48)(44,47)(45,46)(51,60)(52,59)(53,58)(54,57)(55,56)>;

G:=Group( (1,78)(2,79)(3,80)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,73)(17,74)(18,75)(19,76)(20,77)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,48,73,25,11,58,63,35)(2,47,74,24,12,57,64,34)(3,46,75,23,13,56,65,33)(4,45,76,22,14,55,66,32)(5,44,77,21,15,54,67,31)(6,43,78,40,16,53,68,30)(7,42,79,39,17,52,69,29)(8,41,80,38,18,51,70,28)(9,60,61,37,19,50,71,27)(10,59,62,36,20,49,72,26), (1,73)(2,72)(3,71)(4,70)(5,69)(6,68)(7,67)(8,66)(9,65)(10,64)(11,63)(12,62)(13,61)(14,80)(15,79)(16,78)(17,77)(18,76)(19,75)(20,74)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,28)(35,40)(36,39)(37,38)(41,50)(42,49)(43,48)(44,47)(45,46)(51,60)(52,59)(53,58)(54,57)(55,56) );

G=PermutationGroup([(1,78),(2,79),(3,80),(4,61),(5,62),(6,63),(7,64),(8,65),(9,66),(10,67),(11,68),(12,69),(13,70),(14,71),(15,72),(16,73),(17,74),(18,75),(19,76),(20,77),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,48,73,25,11,58,63,35),(2,47,74,24,12,57,64,34),(3,46,75,23,13,56,65,33),(4,45,76,22,14,55,66,32),(5,44,77,21,15,54,67,31),(6,43,78,40,16,53,68,30),(7,42,79,39,17,52,69,29),(8,41,80,38,18,51,70,28),(9,60,61,37,19,50,71,27),(10,59,62,36,20,49,72,26)], [(1,73),(2,72),(3,71),(4,70),(5,69),(6,68),(7,67),(8,66),(9,65),(10,64),(11,63),(12,62),(13,61),(14,80),(15,79),(16,78),(17,77),(18,76),(19,75),(20,74),(21,34),(22,33),(23,32),(24,31),(25,30),(26,29),(27,28),(35,40),(36,39),(37,38),(41,50),(42,49),(43,48),(44,47),(45,46),(51,60),(52,59),(53,58),(54,57),(55,56)])

62 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D5A5B8A8B8C8D8E8F8G8H10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222222224444558888888810···101010101020···202020202040···40
size111122202020202222224444202020202···244442···244444···4

62 irreducible representations

dim11111112222222244
type++++++++++++
imageC1C2C2C2C2C4C4D4D5D10D10C4×D5D20C5⋊D4C4×D5C4.D4C20.46D4
kernelC2×C20.46D4C20.46D4C2×C4.Dic5C10×M4(2)C22×D20C2×D20C23×D5C2×C20C2×M4(2)M4(2)C22×C4C2×C4C2×C4C2×C4C23C10C2
# reps14111444242488428

Matrix representation of C2×C20.46D4 in GL6(𝔽41)

4000000
0400000
0040000
0004000
0000400
0000040
,
610000
4000000
0091100
00301400
00003911
00001425
,
6350000
40350000
002549
0032391328
00421128
0038172329
,
6350000
40350000
0011900
00143000
0029392530
0029101216

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[6,40,0,0,0,0,1,0,0,0,0,0,0,0,9,30,0,0,0,0,11,14,0,0,0,0,0,0,39,14,0,0,0,0,11,25],[6,40,0,0,0,0,35,35,0,0,0,0,0,0,2,32,4,38,0,0,5,39,21,17,0,0,4,13,12,23,0,0,9,28,8,29],[6,40,0,0,0,0,35,35,0,0,0,0,0,0,11,14,29,29,0,0,9,30,39,10,0,0,0,0,25,12,0,0,0,0,30,16] >;

C2×C20.46D4 in GAP, Magma, Sage, TeX

C_2\times C_{20}._{46}D_4
% in TeX

G:=Group("C2xC20.46D4");
// GroupNames label

G:=SmallGroup(320,757);
// by ID

G=gap.SmallGroup(320,757);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,422,58,1123,136,438,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=d^2=1,c^4=b^10,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=b^15*c^3>;
// generators/relations

׿
×
𝔽