direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D10.13D4, C4⋊C4⋊37D10, D10.71(C2×D4), (C2×C10).49C24, (C22×D20).9C2, C22.132(D4×D5), C10.42(C22×D4), (C2×C20).616C23, (C22×D5).132D4, (C22×C4).318D10, D10⋊C4⋊64C22, C22.83(C23×D5), (C2×D20).213C22, C22.76(C4○D20), C10.D4⋊51C22, C10⋊3(C22.D4), (C22×D5).12C23, C23.327(C22×D5), (C22×C10).398C23, (C22×C20).359C22, C22.35(Q8⋊2D5), (C2×Dic5).197C23, (C23×D5).111C22, (C22×Dic5).235C22, C2.14(C2×D4×D5), (C2×C4⋊C4)⋊14D5, (C10×C4⋊C4)⋊11C2, (D5×C22×C4)⋊20C2, (C2×C4×D5)⋊68C22, (C5×C4⋊C4)⋊45C22, C10.19(C2×C4○D4), C2.21(C2×C4○D20), C2.6(C2×Q8⋊2D5), C5⋊3(C2×C22.D4), (C2×C10).388(C2×D4), (C2×D10⋊C4)⋊33C2, (C2×C10.D4)⋊23C2, (C2×C4).140(C22×D5), (C2×C10).106(C4○D4), SmallGroup(320,1177)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 1374 in 342 conjugacy classes, 119 normal (31 characteristic)
C1, C2 [×3], C2 [×4], C2 [×6], C4 [×10], C22, C22 [×6], C22 [×26], C5, C2×C4 [×6], C2×C4 [×22], D4 [×8], C23, C23 [×18], D5 [×6], C10 [×3], C10 [×4], C22⋊C4 [×12], C4⋊C4 [×4], C4⋊C4 [×4], C22×C4 [×3], C22×C4 [×10], C2×D4 [×8], C24 [×2], Dic5 [×4], C20 [×6], D10 [×4], D10 [×22], C2×C10, C2×C10 [×6], C2×C22⋊C4 [×3], C2×C4⋊C4, C2×C4⋊C4, C22.D4 [×8], C23×C4, C22×D4, C4×D5 [×8], D20 [×8], C2×Dic5 [×4], C2×Dic5 [×4], C2×C20 [×6], C2×C20 [×6], C22×D5 [×8], C22×D5 [×10], C22×C10, C2×C22.D4, C10.D4 [×4], D10⋊C4 [×12], C5×C4⋊C4 [×4], C2×C4×D5 [×4], C2×C4×D5 [×4], C2×D20 [×4], C2×D20 [×4], C22×Dic5 [×2], C22×C20 [×3], C23×D5 [×2], D10.13D4 [×8], C2×C10.D4, C2×D10⋊C4 [×3], C10×C4⋊C4, D5×C22×C4, C22×D20, C2×D10.13D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×4], C24, D10 [×7], C22.D4 [×4], C22×D4, C2×C4○D4 [×2], C22×D5 [×7], C2×C22.D4, C4○D20 [×2], D4×D5 [×2], Q8⋊2D5 [×2], C23×D5, D10.13D4 [×4], C2×C4○D20, C2×D4×D5, C2×Q8⋊2D5, C2×D10.13D4
Generators and relations
G = < a,b,c,d,e | a2=b10=c2=d4=1, e2=b5, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=ece-1=b5c, ede-1=d-1 >
(1 105)(2 106)(3 107)(4 108)(5 109)(6 110)(7 101)(8 102)(9 103)(10 104)(11 80)(12 71)(13 72)(14 73)(15 74)(16 75)(17 76)(18 77)(19 78)(20 79)(21 96)(22 97)(23 98)(24 99)(25 100)(26 91)(27 92)(28 93)(29 94)(30 95)(31 126)(32 127)(33 128)(34 129)(35 130)(36 121)(37 122)(38 123)(39 124)(40 125)(41 116)(42 117)(43 118)(44 119)(45 120)(46 111)(47 112)(48 113)(49 114)(50 115)(51 146)(52 147)(53 148)(54 149)(55 150)(56 141)(57 142)(58 143)(59 144)(60 145)(61 136)(62 137)(63 138)(64 139)(65 140)(66 131)(67 132)(68 133)(69 134)(70 135)(81 156)(82 157)(83 158)(84 159)(85 160)(86 151)(87 152)(88 153)(89 154)(90 155)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 84)(2 83)(3 82)(4 81)(5 90)(6 89)(7 88)(8 87)(9 86)(10 85)(11 99)(12 98)(13 97)(14 96)(15 95)(16 94)(17 93)(18 92)(19 91)(20 100)(21 73)(22 72)(23 71)(24 80)(25 79)(26 78)(27 77)(28 76)(29 75)(30 74)(31 68)(32 67)(33 66)(34 65)(35 64)(36 63)(37 62)(38 61)(39 70)(40 69)(41 58)(42 57)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 60)(50 59)(101 153)(102 152)(103 151)(104 160)(105 159)(106 158)(107 157)(108 156)(109 155)(110 154)(111 148)(112 147)(113 146)(114 145)(115 144)(116 143)(117 142)(118 141)(119 150)(120 149)(121 138)(122 137)(123 136)(124 135)(125 134)(126 133)(127 132)(128 131)(129 140)(130 139)
(1 125 25 120)(2 126 26 111)(3 127 27 112)(4 128 28 113)(5 129 29 114)(6 130 30 115)(7 121 21 116)(8 122 22 117)(9 123 23 118)(10 124 24 119)(11 60 160 65)(12 51 151 66)(13 52 152 67)(14 53 153 68)(15 54 154 69)(16 55 155 70)(17 56 156 61)(18 57 157 62)(19 58 158 63)(20 59 159 64)(31 91 46 106)(32 92 47 107)(33 93 48 108)(34 94 49 109)(35 95 50 110)(36 96 41 101)(37 97 42 102)(38 98 43 103)(39 99 44 104)(40 100 45 105)(71 146 86 131)(72 147 87 132)(73 148 88 133)(74 149 89 134)(75 150 90 135)(76 141 81 136)(77 142 82 137)(78 143 83 138)(79 144 84 139)(80 145 85 140)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 151 26 156)(22 152 27 157)(23 153 28 158)(24 154 29 159)(25 155 30 160)(31 136 36 131)(32 137 37 132)(33 138 38 133)(34 139 39 134)(35 140 40 135)(41 146 46 141)(42 147 47 142)(43 148 48 143)(44 149 49 144)(45 150 50 145)(51 111 56 116)(52 112 57 117)(53 113 58 118)(54 114 59 119)(55 115 60 120)(61 121 66 126)(62 122 67 127)(63 123 68 128)(64 124 69 129)(65 125 70 130)(71 106 76 101)(72 107 77 102)(73 108 78 103)(74 109 79 104)(75 110 80 105)(81 96 86 91)(82 97 87 92)(83 98 88 93)(84 99 89 94)(85 100 90 95)
G:=sub<Sym(160)| (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,101)(8,102)(9,103)(10,104)(11,80)(12,71)(13,72)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,96)(22,97)(23,98)(24,99)(25,100)(26,91)(27,92)(28,93)(29,94)(30,95)(31,126)(32,127)(33,128)(34,129)(35,130)(36,121)(37,122)(38,123)(39,124)(40,125)(41,116)(42,117)(43,118)(44,119)(45,120)(46,111)(47,112)(48,113)(49,114)(50,115)(51,146)(52,147)(53,148)(54,149)(55,150)(56,141)(57,142)(58,143)(59,144)(60,145)(61,136)(62,137)(63,138)(64,139)(65,140)(66,131)(67,132)(68,133)(69,134)(70,135)(81,156)(82,157)(83,158)(84,159)(85,160)(86,151)(87,152)(88,153)(89,154)(90,155), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,84)(2,83)(3,82)(4,81)(5,90)(6,89)(7,88)(8,87)(9,86)(10,85)(11,99)(12,98)(13,97)(14,96)(15,95)(16,94)(17,93)(18,92)(19,91)(20,100)(21,73)(22,72)(23,71)(24,80)(25,79)(26,78)(27,77)(28,76)(29,75)(30,74)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,62)(38,61)(39,70)(40,69)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,60)(50,59)(101,153)(102,152)(103,151)(104,160)(105,159)(106,158)(107,157)(108,156)(109,155)(110,154)(111,148)(112,147)(113,146)(114,145)(115,144)(116,143)(117,142)(118,141)(119,150)(120,149)(121,138)(122,137)(123,136)(124,135)(125,134)(126,133)(127,132)(128,131)(129,140)(130,139), (1,125,25,120)(2,126,26,111)(3,127,27,112)(4,128,28,113)(5,129,29,114)(6,130,30,115)(7,121,21,116)(8,122,22,117)(9,123,23,118)(10,124,24,119)(11,60,160,65)(12,51,151,66)(13,52,152,67)(14,53,153,68)(15,54,154,69)(16,55,155,70)(17,56,156,61)(18,57,157,62)(19,58,158,63)(20,59,159,64)(31,91,46,106)(32,92,47,107)(33,93,48,108)(34,94,49,109)(35,95,50,110)(36,96,41,101)(37,97,42,102)(38,98,43,103)(39,99,44,104)(40,100,45,105)(71,146,86,131)(72,147,87,132)(73,148,88,133)(74,149,89,134)(75,150,90,135)(76,141,81,136)(77,142,82,137)(78,143,83,138)(79,144,84,139)(80,145,85,140), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,151,26,156)(22,152,27,157)(23,153,28,158)(24,154,29,159)(25,155,30,160)(31,136,36,131)(32,137,37,132)(33,138,38,133)(34,139,39,134)(35,140,40,135)(41,146,46,141)(42,147,47,142)(43,148,48,143)(44,149,49,144)(45,150,50,145)(51,111,56,116)(52,112,57,117)(53,113,58,118)(54,114,59,119)(55,115,60,120)(61,121,66,126)(62,122,67,127)(63,123,68,128)(64,124,69,129)(65,125,70,130)(71,106,76,101)(72,107,77,102)(73,108,78,103)(74,109,79,104)(75,110,80,105)(81,96,86,91)(82,97,87,92)(83,98,88,93)(84,99,89,94)(85,100,90,95)>;
G:=Group( (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,101)(8,102)(9,103)(10,104)(11,80)(12,71)(13,72)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,96)(22,97)(23,98)(24,99)(25,100)(26,91)(27,92)(28,93)(29,94)(30,95)(31,126)(32,127)(33,128)(34,129)(35,130)(36,121)(37,122)(38,123)(39,124)(40,125)(41,116)(42,117)(43,118)(44,119)(45,120)(46,111)(47,112)(48,113)(49,114)(50,115)(51,146)(52,147)(53,148)(54,149)(55,150)(56,141)(57,142)(58,143)(59,144)(60,145)(61,136)(62,137)(63,138)(64,139)(65,140)(66,131)(67,132)(68,133)(69,134)(70,135)(81,156)(82,157)(83,158)(84,159)(85,160)(86,151)(87,152)(88,153)(89,154)(90,155), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,84)(2,83)(3,82)(4,81)(5,90)(6,89)(7,88)(8,87)(9,86)(10,85)(11,99)(12,98)(13,97)(14,96)(15,95)(16,94)(17,93)(18,92)(19,91)(20,100)(21,73)(22,72)(23,71)(24,80)(25,79)(26,78)(27,77)(28,76)(29,75)(30,74)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,62)(38,61)(39,70)(40,69)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,60)(50,59)(101,153)(102,152)(103,151)(104,160)(105,159)(106,158)(107,157)(108,156)(109,155)(110,154)(111,148)(112,147)(113,146)(114,145)(115,144)(116,143)(117,142)(118,141)(119,150)(120,149)(121,138)(122,137)(123,136)(124,135)(125,134)(126,133)(127,132)(128,131)(129,140)(130,139), (1,125,25,120)(2,126,26,111)(3,127,27,112)(4,128,28,113)(5,129,29,114)(6,130,30,115)(7,121,21,116)(8,122,22,117)(9,123,23,118)(10,124,24,119)(11,60,160,65)(12,51,151,66)(13,52,152,67)(14,53,153,68)(15,54,154,69)(16,55,155,70)(17,56,156,61)(18,57,157,62)(19,58,158,63)(20,59,159,64)(31,91,46,106)(32,92,47,107)(33,93,48,108)(34,94,49,109)(35,95,50,110)(36,96,41,101)(37,97,42,102)(38,98,43,103)(39,99,44,104)(40,100,45,105)(71,146,86,131)(72,147,87,132)(73,148,88,133)(74,149,89,134)(75,150,90,135)(76,141,81,136)(77,142,82,137)(78,143,83,138)(79,144,84,139)(80,145,85,140), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,151,26,156)(22,152,27,157)(23,153,28,158)(24,154,29,159)(25,155,30,160)(31,136,36,131)(32,137,37,132)(33,138,38,133)(34,139,39,134)(35,140,40,135)(41,146,46,141)(42,147,47,142)(43,148,48,143)(44,149,49,144)(45,150,50,145)(51,111,56,116)(52,112,57,117)(53,113,58,118)(54,114,59,119)(55,115,60,120)(61,121,66,126)(62,122,67,127)(63,123,68,128)(64,124,69,129)(65,125,70,130)(71,106,76,101)(72,107,77,102)(73,108,78,103)(74,109,79,104)(75,110,80,105)(81,96,86,91)(82,97,87,92)(83,98,88,93)(84,99,89,94)(85,100,90,95) );
G=PermutationGroup([(1,105),(2,106),(3,107),(4,108),(5,109),(6,110),(7,101),(8,102),(9,103),(10,104),(11,80),(12,71),(13,72),(14,73),(15,74),(16,75),(17,76),(18,77),(19,78),(20,79),(21,96),(22,97),(23,98),(24,99),(25,100),(26,91),(27,92),(28,93),(29,94),(30,95),(31,126),(32,127),(33,128),(34,129),(35,130),(36,121),(37,122),(38,123),(39,124),(40,125),(41,116),(42,117),(43,118),(44,119),(45,120),(46,111),(47,112),(48,113),(49,114),(50,115),(51,146),(52,147),(53,148),(54,149),(55,150),(56,141),(57,142),(58,143),(59,144),(60,145),(61,136),(62,137),(63,138),(64,139),(65,140),(66,131),(67,132),(68,133),(69,134),(70,135),(81,156),(82,157),(83,158),(84,159),(85,160),(86,151),(87,152),(88,153),(89,154),(90,155)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,84),(2,83),(3,82),(4,81),(5,90),(6,89),(7,88),(8,87),(9,86),(10,85),(11,99),(12,98),(13,97),(14,96),(15,95),(16,94),(17,93),(18,92),(19,91),(20,100),(21,73),(22,72),(23,71),(24,80),(25,79),(26,78),(27,77),(28,76),(29,75),(30,74),(31,68),(32,67),(33,66),(34,65),(35,64),(36,63),(37,62),(38,61),(39,70),(40,69),(41,58),(42,57),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,60),(50,59),(101,153),(102,152),(103,151),(104,160),(105,159),(106,158),(107,157),(108,156),(109,155),(110,154),(111,148),(112,147),(113,146),(114,145),(115,144),(116,143),(117,142),(118,141),(119,150),(120,149),(121,138),(122,137),(123,136),(124,135),(125,134),(126,133),(127,132),(128,131),(129,140),(130,139)], [(1,125,25,120),(2,126,26,111),(3,127,27,112),(4,128,28,113),(5,129,29,114),(6,130,30,115),(7,121,21,116),(8,122,22,117),(9,123,23,118),(10,124,24,119),(11,60,160,65),(12,51,151,66),(13,52,152,67),(14,53,153,68),(15,54,154,69),(16,55,155,70),(17,56,156,61),(18,57,157,62),(19,58,158,63),(20,59,159,64),(31,91,46,106),(32,92,47,107),(33,93,48,108),(34,94,49,109),(35,95,50,110),(36,96,41,101),(37,97,42,102),(38,98,43,103),(39,99,44,104),(40,100,45,105),(71,146,86,131),(72,147,87,132),(73,148,88,133),(74,149,89,134),(75,150,90,135),(76,141,81,136),(77,142,82,137),(78,143,83,138),(79,144,84,139),(80,145,85,140)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,151,26,156),(22,152,27,157),(23,153,28,158),(24,154,29,159),(25,155,30,160),(31,136,36,131),(32,137,37,132),(33,138,38,133),(34,139,39,134),(35,140,40,135),(41,146,46,141),(42,147,47,142),(43,148,48,143),(44,149,49,144),(45,150,50,145),(51,111,56,116),(52,112,57,117),(53,113,58,118),(54,114,59,119),(55,115,60,120),(61,121,66,126),(62,122,67,127),(63,123,68,128),(64,124,69,129),(65,125,70,130),(71,106,76,101),(72,107,77,102),(73,108,78,103),(74,109,79,104),(75,110,80,105),(81,96,86,91),(82,97,87,92),(83,98,88,93),(84,99,89,94),(85,100,90,95)])
Matrix representation ►G ⊆ GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 34 | 7 | 0 | 0 |
0 | 34 | 1 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 11 | 32 | 0 | 0 |
0 | 27 | 30 | 0 | 0 |
0 | 0 | 0 | 10 | 10 |
0 | 0 | 0 | 27 | 31 |
40 | 0 | 0 | 0 | 0 |
0 | 17 | 1 | 0 | 0 |
0 | 40 | 24 | 0 | 0 |
0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 18 | 9 |
40 | 0 | 0 | 0 | 0 |
0 | 30 | 9 | 0 | 0 |
0 | 32 | 11 | 0 | 0 |
0 | 0 | 0 | 31 | 31 |
0 | 0 | 0 | 6 | 10 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,34,34,0,0,0,7,1,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,11,27,0,0,0,32,30,0,0,0,0,0,10,27,0,0,0,10,31],[40,0,0,0,0,0,17,40,0,0,0,1,24,0,0,0,0,0,32,18,0,0,0,0,9],[40,0,0,0,0,0,30,32,0,0,0,9,11,0,0,0,0,0,31,6,0,0,0,31,10] >;
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 5A | 5B | 10A | ··· | 10N | 20A | ··· | 20X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 10 | 10 | 10 | 10 | 20 | 20 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | 10 | 10 | 10 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | C4○D4 | D10 | D10 | C4○D20 | D4×D5 | Q8⋊2D5 |
kernel | C2×D10.13D4 | D10.13D4 | C2×C10.D4 | C2×D10⋊C4 | C10×C4⋊C4 | D5×C22×C4 | C22×D20 | C22×D5 | C2×C4⋊C4 | C2×C10 | C4⋊C4 | C22×C4 | C22 | C22 | C22 |
# reps | 1 | 8 | 1 | 3 | 1 | 1 | 1 | 4 | 2 | 8 | 8 | 6 | 16 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_2\times D_{10}._{13}D_4
% in TeX
G:=Group("C2xD10.13D4");
// GroupNames label
G:=SmallGroup(320,1177);
// by ID
G=gap.SmallGroup(320,1177);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,100,675,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^10=c^2=d^4=1,e^2=b^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e^-1=b^5*c,e*d*e^-1=d^-1>;
// generators/relations