metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.22- (1+4), C10.82+ (1+4), C4○D20⋊15C4, D20⋊33(C2×C4), D20⋊8C4⋊8C2, C4⋊C4.305D10, Dic5⋊3Q8⋊8C2, Dic10⋊31(C2×C4), (C2×C10).48C24, C10.35(C23×C4), C2.2(D4⋊6D10), (C2×C20).486C23, C20.148(C22×C4), D10.12(C22×C4), (C22×C4).176D10, C22.24(C23×D5), (C2×D20).261C22, C4⋊Dic5.359C22, (C4×Dic5).71C22, Dic5.13(C22×C4), C23.224(C22×D5), C23.21D10⋊22C2, (C22×C10).397C23, (C22×C20).216C22, C2.1(Q8.10D10), C5⋊2(C23.33C23), (C2×Dic5).196C23, (C22×D5).165C23, C23.D5.141C22, D10⋊C4.116C22, (C2×Dic10).289C22, C10.D4.129C22, (D5×C4⋊C4)⋊8C2, (C2×C4)⋊5(C4×D5), C4.92(C2×C4×D5), (C2×C4⋊C4)⋊13D5, (C4×D5)⋊1(C2×C4), (C10×C4⋊C4)⋊10C2, (C2×C20)⋊22(C2×C4), C4⋊C4⋊7D5⋊8C2, (C4×C5⋊D4)⋊35C2, C5⋊D4⋊14(C2×C4), C22.10(C2×C4×D5), C2.16(D5×C22×C4), (C2×C4○D20).16C2, (C2×C4×D5).240C22, (C5×C4⋊C4).294C22, (C2×C4).267(C22×D5), (C2×C10).254(C22×C4), (C2×C5⋊D4).158C22, SmallGroup(320,1176)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 894 in 294 conjugacy classes, 151 normal (27 characteristic)
C1, C2 [×3], C2 [×6], C4 [×4], C4 [×12], C22, C22 [×2], C22 [×10], C5, C2×C4 [×2], C2×C4 [×8], C2×C4 [×20], D4 [×12], Q8 [×4], C23, C23 [×2], D5 [×4], C10 [×3], C10 [×2], C42 [×6], C22⋊C4 [×6], C4⋊C4 [×4], C4⋊C4 [×6], C22×C4, C22×C4 [×2], C22×C4 [×6], C2×D4 [×3], C2×Q8, C4○D4 [×8], Dic5 [×4], Dic5 [×4], C20 [×4], C20 [×4], D10 [×4], D10 [×4], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×C4⋊C4, C2×C4⋊C4 [×2], C42⋊C2 [×3], C4×D4 [×6], C4×Q8 [×2], C2×C4○D4, Dic10 [×4], C4×D5 [×8], C4×D5 [×4], D20 [×4], C2×Dic5 [×6], C5⋊D4 [×8], C2×C20 [×2], C2×C20 [×8], C2×C20 [×2], C22×D5 [×2], C22×C10, C23.33C23, C4×Dic5 [×6], C10.D4 [×4], C4⋊Dic5 [×2], D10⋊C4 [×4], C23.D5 [×2], C5×C4⋊C4 [×4], C2×Dic10, C2×C4×D5 [×6], C2×D20, C4○D20 [×8], C2×C5⋊D4 [×2], C22×C20, C22×C20 [×2], Dic5⋊3Q8 [×2], D5×C4⋊C4 [×2], C4⋊C4⋊7D5 [×2], D20⋊8C4 [×2], C23.21D10, C4×C5⋊D4 [×4], C10×C4⋊C4, C2×C4○D20, C10.22- (1+4)
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], D5, C22×C4 [×14], C24, D10 [×7], C23×C4, 2+ (1+4), 2- (1+4), C4×D5 [×4], C22×D5 [×7], C23.33C23, C2×C4×D5 [×6], C23×D5, D5×C22×C4, D4⋊6D10, Q8.10D10, C10.22- (1+4)
Generators and relations
G = < a,b,c,d,e | a10=b4=1, c2=a5, d2=e2=b2, bab-1=cac-1=a-1, ad=da, ae=ea, cbc-1=a5b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=a5b2d >
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 153 24 11)(2 152 25 20)(3 151 26 19)(4 160 27 18)(5 159 28 17)(6 158 29 16)(7 157 30 15)(8 156 21 14)(9 155 22 13)(10 154 23 12)(31 142 43 140)(32 141 44 139)(33 150 45 138)(34 149 46 137)(35 148 47 136)(36 147 48 135)(37 146 49 134)(38 145 50 133)(39 144 41 132)(40 143 42 131)(51 120 63 122)(52 119 64 121)(53 118 65 130)(54 117 66 129)(55 116 67 128)(56 115 68 127)(57 114 69 126)(58 113 70 125)(59 112 61 124)(60 111 62 123)(71 95 83 107)(72 94 84 106)(73 93 85 105)(74 92 86 104)(75 91 87 103)(76 100 88 102)(77 99 89 101)(78 98 90 110)(79 97 81 109)(80 96 82 108)
(1 113 6 118)(2 112 7 117)(3 111 8 116)(4 120 9 115)(5 119 10 114)(11 65 16 70)(12 64 17 69)(13 63 18 68)(14 62 19 67)(15 61 20 66)(21 128 26 123)(22 127 27 122)(23 126 28 121)(24 125 29 130)(25 124 30 129)(31 102 36 107)(32 101 37 106)(33 110 38 105)(34 109 39 104)(35 108 40 103)(41 92 46 97)(42 91 47 96)(43 100 48 95)(44 99 49 94)(45 98 50 93)(51 160 56 155)(52 159 57 154)(53 158 58 153)(54 157 59 152)(55 156 60 151)(71 135 76 140)(72 134 77 139)(73 133 78 138)(74 132 79 137)(75 131 80 136)(81 149 86 144)(82 148 87 143)(83 147 88 142)(84 146 89 141)(85 145 90 150)
(1 16 24 158)(2 17 25 159)(3 18 26 160)(4 19 27 151)(5 20 28 152)(6 11 29 153)(7 12 30 154)(8 13 21 155)(9 14 22 156)(10 15 23 157)(31 148 43 136)(32 149 44 137)(33 150 45 138)(34 141 46 139)(35 142 47 140)(36 143 48 131)(37 144 49 132)(38 145 50 133)(39 146 41 134)(40 147 42 135)(51 116 63 128)(52 117 64 129)(53 118 65 130)(54 119 66 121)(55 120 67 122)(56 111 68 123)(57 112 69 124)(58 113 70 125)(59 114 61 126)(60 115 62 127)(71 108 83 96)(72 109 84 97)(73 110 85 98)(74 101 86 99)(75 102 87 100)(76 103 88 91)(77 104 89 92)(78 105 90 93)(79 106 81 94)(80 107 82 95)
(1 33 24 45)(2 34 25 46)(3 35 26 47)(4 36 27 48)(5 37 28 49)(6 38 29 50)(7 39 30 41)(8 40 21 42)(9 31 22 43)(10 32 23 44)(11 138 153 150)(12 139 154 141)(13 140 155 142)(14 131 156 143)(15 132 157 144)(16 133 158 145)(17 134 159 146)(18 135 160 147)(19 136 151 148)(20 137 152 149)(51 83 63 71)(52 84 64 72)(53 85 65 73)(54 86 66 74)(55 87 67 75)(56 88 68 76)(57 89 69 77)(58 90 70 78)(59 81 61 79)(60 82 62 80)(91 116 103 128)(92 117 104 129)(93 118 105 130)(94 119 106 121)(95 120 107 122)(96 111 108 123)(97 112 109 124)(98 113 110 125)(99 114 101 126)(100 115 102 127)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,153,24,11)(2,152,25,20)(3,151,26,19)(4,160,27,18)(5,159,28,17)(6,158,29,16)(7,157,30,15)(8,156,21,14)(9,155,22,13)(10,154,23,12)(31,142,43,140)(32,141,44,139)(33,150,45,138)(34,149,46,137)(35,148,47,136)(36,147,48,135)(37,146,49,134)(38,145,50,133)(39,144,41,132)(40,143,42,131)(51,120,63,122)(52,119,64,121)(53,118,65,130)(54,117,66,129)(55,116,67,128)(56,115,68,127)(57,114,69,126)(58,113,70,125)(59,112,61,124)(60,111,62,123)(71,95,83,107)(72,94,84,106)(73,93,85,105)(74,92,86,104)(75,91,87,103)(76,100,88,102)(77,99,89,101)(78,98,90,110)(79,97,81,109)(80,96,82,108), (1,113,6,118)(2,112,7,117)(3,111,8,116)(4,120,9,115)(5,119,10,114)(11,65,16,70)(12,64,17,69)(13,63,18,68)(14,62,19,67)(15,61,20,66)(21,128,26,123)(22,127,27,122)(23,126,28,121)(24,125,29,130)(25,124,30,129)(31,102,36,107)(32,101,37,106)(33,110,38,105)(34,109,39,104)(35,108,40,103)(41,92,46,97)(42,91,47,96)(43,100,48,95)(44,99,49,94)(45,98,50,93)(51,160,56,155)(52,159,57,154)(53,158,58,153)(54,157,59,152)(55,156,60,151)(71,135,76,140)(72,134,77,139)(73,133,78,138)(74,132,79,137)(75,131,80,136)(81,149,86,144)(82,148,87,143)(83,147,88,142)(84,146,89,141)(85,145,90,150), (1,16,24,158)(2,17,25,159)(3,18,26,160)(4,19,27,151)(5,20,28,152)(6,11,29,153)(7,12,30,154)(8,13,21,155)(9,14,22,156)(10,15,23,157)(31,148,43,136)(32,149,44,137)(33,150,45,138)(34,141,46,139)(35,142,47,140)(36,143,48,131)(37,144,49,132)(38,145,50,133)(39,146,41,134)(40,147,42,135)(51,116,63,128)(52,117,64,129)(53,118,65,130)(54,119,66,121)(55,120,67,122)(56,111,68,123)(57,112,69,124)(58,113,70,125)(59,114,61,126)(60,115,62,127)(71,108,83,96)(72,109,84,97)(73,110,85,98)(74,101,86,99)(75,102,87,100)(76,103,88,91)(77,104,89,92)(78,105,90,93)(79,106,81,94)(80,107,82,95), (1,33,24,45)(2,34,25,46)(3,35,26,47)(4,36,27,48)(5,37,28,49)(6,38,29,50)(7,39,30,41)(8,40,21,42)(9,31,22,43)(10,32,23,44)(11,138,153,150)(12,139,154,141)(13,140,155,142)(14,131,156,143)(15,132,157,144)(16,133,158,145)(17,134,159,146)(18,135,160,147)(19,136,151,148)(20,137,152,149)(51,83,63,71)(52,84,64,72)(53,85,65,73)(54,86,66,74)(55,87,67,75)(56,88,68,76)(57,89,69,77)(58,90,70,78)(59,81,61,79)(60,82,62,80)(91,116,103,128)(92,117,104,129)(93,118,105,130)(94,119,106,121)(95,120,107,122)(96,111,108,123)(97,112,109,124)(98,113,110,125)(99,114,101,126)(100,115,102,127)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,153,24,11)(2,152,25,20)(3,151,26,19)(4,160,27,18)(5,159,28,17)(6,158,29,16)(7,157,30,15)(8,156,21,14)(9,155,22,13)(10,154,23,12)(31,142,43,140)(32,141,44,139)(33,150,45,138)(34,149,46,137)(35,148,47,136)(36,147,48,135)(37,146,49,134)(38,145,50,133)(39,144,41,132)(40,143,42,131)(51,120,63,122)(52,119,64,121)(53,118,65,130)(54,117,66,129)(55,116,67,128)(56,115,68,127)(57,114,69,126)(58,113,70,125)(59,112,61,124)(60,111,62,123)(71,95,83,107)(72,94,84,106)(73,93,85,105)(74,92,86,104)(75,91,87,103)(76,100,88,102)(77,99,89,101)(78,98,90,110)(79,97,81,109)(80,96,82,108), (1,113,6,118)(2,112,7,117)(3,111,8,116)(4,120,9,115)(5,119,10,114)(11,65,16,70)(12,64,17,69)(13,63,18,68)(14,62,19,67)(15,61,20,66)(21,128,26,123)(22,127,27,122)(23,126,28,121)(24,125,29,130)(25,124,30,129)(31,102,36,107)(32,101,37,106)(33,110,38,105)(34,109,39,104)(35,108,40,103)(41,92,46,97)(42,91,47,96)(43,100,48,95)(44,99,49,94)(45,98,50,93)(51,160,56,155)(52,159,57,154)(53,158,58,153)(54,157,59,152)(55,156,60,151)(71,135,76,140)(72,134,77,139)(73,133,78,138)(74,132,79,137)(75,131,80,136)(81,149,86,144)(82,148,87,143)(83,147,88,142)(84,146,89,141)(85,145,90,150), (1,16,24,158)(2,17,25,159)(3,18,26,160)(4,19,27,151)(5,20,28,152)(6,11,29,153)(7,12,30,154)(8,13,21,155)(9,14,22,156)(10,15,23,157)(31,148,43,136)(32,149,44,137)(33,150,45,138)(34,141,46,139)(35,142,47,140)(36,143,48,131)(37,144,49,132)(38,145,50,133)(39,146,41,134)(40,147,42,135)(51,116,63,128)(52,117,64,129)(53,118,65,130)(54,119,66,121)(55,120,67,122)(56,111,68,123)(57,112,69,124)(58,113,70,125)(59,114,61,126)(60,115,62,127)(71,108,83,96)(72,109,84,97)(73,110,85,98)(74,101,86,99)(75,102,87,100)(76,103,88,91)(77,104,89,92)(78,105,90,93)(79,106,81,94)(80,107,82,95), (1,33,24,45)(2,34,25,46)(3,35,26,47)(4,36,27,48)(5,37,28,49)(6,38,29,50)(7,39,30,41)(8,40,21,42)(9,31,22,43)(10,32,23,44)(11,138,153,150)(12,139,154,141)(13,140,155,142)(14,131,156,143)(15,132,157,144)(16,133,158,145)(17,134,159,146)(18,135,160,147)(19,136,151,148)(20,137,152,149)(51,83,63,71)(52,84,64,72)(53,85,65,73)(54,86,66,74)(55,87,67,75)(56,88,68,76)(57,89,69,77)(58,90,70,78)(59,81,61,79)(60,82,62,80)(91,116,103,128)(92,117,104,129)(93,118,105,130)(94,119,106,121)(95,120,107,122)(96,111,108,123)(97,112,109,124)(98,113,110,125)(99,114,101,126)(100,115,102,127) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,153,24,11),(2,152,25,20),(3,151,26,19),(4,160,27,18),(5,159,28,17),(6,158,29,16),(7,157,30,15),(8,156,21,14),(9,155,22,13),(10,154,23,12),(31,142,43,140),(32,141,44,139),(33,150,45,138),(34,149,46,137),(35,148,47,136),(36,147,48,135),(37,146,49,134),(38,145,50,133),(39,144,41,132),(40,143,42,131),(51,120,63,122),(52,119,64,121),(53,118,65,130),(54,117,66,129),(55,116,67,128),(56,115,68,127),(57,114,69,126),(58,113,70,125),(59,112,61,124),(60,111,62,123),(71,95,83,107),(72,94,84,106),(73,93,85,105),(74,92,86,104),(75,91,87,103),(76,100,88,102),(77,99,89,101),(78,98,90,110),(79,97,81,109),(80,96,82,108)], [(1,113,6,118),(2,112,7,117),(3,111,8,116),(4,120,9,115),(5,119,10,114),(11,65,16,70),(12,64,17,69),(13,63,18,68),(14,62,19,67),(15,61,20,66),(21,128,26,123),(22,127,27,122),(23,126,28,121),(24,125,29,130),(25,124,30,129),(31,102,36,107),(32,101,37,106),(33,110,38,105),(34,109,39,104),(35,108,40,103),(41,92,46,97),(42,91,47,96),(43,100,48,95),(44,99,49,94),(45,98,50,93),(51,160,56,155),(52,159,57,154),(53,158,58,153),(54,157,59,152),(55,156,60,151),(71,135,76,140),(72,134,77,139),(73,133,78,138),(74,132,79,137),(75,131,80,136),(81,149,86,144),(82,148,87,143),(83,147,88,142),(84,146,89,141),(85,145,90,150)], [(1,16,24,158),(2,17,25,159),(3,18,26,160),(4,19,27,151),(5,20,28,152),(6,11,29,153),(7,12,30,154),(8,13,21,155),(9,14,22,156),(10,15,23,157),(31,148,43,136),(32,149,44,137),(33,150,45,138),(34,141,46,139),(35,142,47,140),(36,143,48,131),(37,144,49,132),(38,145,50,133),(39,146,41,134),(40,147,42,135),(51,116,63,128),(52,117,64,129),(53,118,65,130),(54,119,66,121),(55,120,67,122),(56,111,68,123),(57,112,69,124),(58,113,70,125),(59,114,61,126),(60,115,62,127),(71,108,83,96),(72,109,84,97),(73,110,85,98),(74,101,86,99),(75,102,87,100),(76,103,88,91),(77,104,89,92),(78,105,90,93),(79,106,81,94),(80,107,82,95)], [(1,33,24,45),(2,34,25,46),(3,35,26,47),(4,36,27,48),(5,37,28,49),(6,38,29,50),(7,39,30,41),(8,40,21,42),(9,31,22,43),(10,32,23,44),(11,138,153,150),(12,139,154,141),(13,140,155,142),(14,131,156,143),(15,132,157,144),(16,133,158,145),(17,134,159,146),(18,135,160,147),(19,136,151,148),(20,137,152,149),(51,83,63,71),(52,84,64,72),(53,85,65,73),(54,86,66,74),(55,87,67,75),(56,88,68,76),(57,89,69,77),(58,90,70,78),(59,81,61,79),(60,82,62,80),(91,116,103,128),(92,117,104,129),(93,118,105,130),(94,119,106,121),(95,120,107,122),(96,111,108,123),(97,112,109,124),(98,113,110,125),(99,114,101,126),(100,115,102,127)])
Matrix representation ►G ⊆ GL6(𝔽41)
| 0 | 6 | 0 | 0 | 0 | 0 |
| 34 | 7 | 0 | 0 | 0 | 0 |
| 0 | 0 | 40 | 35 | 0 | 0 |
| 0 | 0 | 6 | 35 | 0 | 0 |
| 0 | 0 | 0 | 0 | 40 | 35 |
| 0 | 0 | 0 | 0 | 6 | 35 |
| 22 | 32 | 0 | 0 | 0 | 0 |
| 22 | 19 | 0 | 0 | 0 | 0 |
| 0 | 0 | 26 | 33 | 24 | 13 |
| 0 | 0 | 0 | 15 | 33 | 17 |
| 0 | 0 | 17 | 28 | 26 | 33 |
| 0 | 0 | 8 | 24 | 0 | 15 |
| 22 | 32 | 0 | 0 | 0 | 0 |
| 22 | 19 | 0 | 0 | 0 | 0 |
| 0 | 0 | 24 | 13 | 26 | 33 |
| 0 | 0 | 33 | 17 | 0 | 15 |
| 0 | 0 | 15 | 8 | 24 | 13 |
| 0 | 0 | 0 | 26 | 33 | 17 |
| 32 | 0 | 0 | 0 | 0 | 0 |
| 0 | 32 | 0 | 0 | 0 | 0 |
| 0 | 0 | 15 | 0 | 24 | 8 |
| 0 | 0 | 0 | 15 | 33 | 17 |
| 0 | 0 | 24 | 8 | 26 | 0 |
| 0 | 0 | 33 | 17 | 0 | 26 |
| 32 | 0 | 0 | 0 | 0 | 0 |
| 0 | 32 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 40 | 0 | 0 | 0 |
| 0 | 0 | 0 | 40 | 0 | 0 |
G:=sub<GL(6,GF(41))| [0,34,0,0,0,0,6,7,0,0,0,0,0,0,40,6,0,0,0,0,35,35,0,0,0,0,0,0,40,6,0,0,0,0,35,35],[22,22,0,0,0,0,32,19,0,0,0,0,0,0,26,0,17,8,0,0,33,15,28,24,0,0,24,33,26,0,0,0,13,17,33,15],[22,22,0,0,0,0,32,19,0,0,0,0,0,0,24,33,15,0,0,0,13,17,8,26,0,0,26,0,24,33,0,0,33,15,13,17],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,15,0,24,33,0,0,0,15,8,17,0,0,24,33,26,0,0,0,8,17,0,26],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,1,0,0,0,0,0,0,1,0,0] >;
74 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | ··· | 4L | 4M | ··· | 4X | 5A | 5B | 10A | ··· | 10N | 20A | ··· | 20X |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | ··· | 2 | 10 | ··· | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
74 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D5 | D10 | D10 | C4×D5 | 2+ (1+4) | 2- (1+4) | D4⋊6D10 | Q8.10D10 |
| kernel | C10.22- (1+4) | Dic5⋊3Q8 | D5×C4⋊C4 | C4⋊C4⋊7D5 | D20⋊8C4 | C23.21D10 | C4×C5⋊D4 | C10×C4⋊C4 | C2×C4○D20 | C4○D20 | C2×C4⋊C4 | C4⋊C4 | C22×C4 | C2×C4 | C10 | C10 | C2 | C2 |
| # reps | 1 | 2 | 2 | 2 | 2 | 1 | 4 | 1 | 1 | 16 | 2 | 8 | 6 | 16 | 1 | 1 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_{10}._22_-^{(1+4)} % in TeX
G:=Group("C10.2ES-(2,2)"); // GroupNames label
G:=SmallGroup(320,1176);
// by ID
G=gap.SmallGroup(320,1176);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,570,80,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=1,c^2=a^5,d^2=e^2=b^2,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=a^5*b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a^5*b^2*d>;
// generators/relations