Copied to
clipboard

?

G = C2×D102Q8order 320 = 26·5

Direct product of C2 and D102Q8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D102Q8, C4⋊C440D10, D102(C2×Q8), C4.68(C2×D20), (C22×D5)⋊5Q8, (C2×C20).201D4, (C2×C4).156D20, C20.221(C2×D4), C103(C22⋊Q8), C22.34(Q8×D5), (C2×C10).53C24, C4⋊Dic553C22, C22.68(C2×D20), C10.10(C22×D4), C2.12(C22×D20), C10.25(C22×Q8), (C2×C20).488C23, (C22×C4).361D10, C22.87(C23×D5), (C2×Dic10)⋊60C22, (C22×Dic10)⋊14C2, (C2×Dic5).15C23, C23.330(C22×D5), D10⋊C4.93C22, C22.74(D42D5), (C22×C20).218C22, (C22×C10).402C23, (C22×D5).169C23, (C23×D5).114C22, (C22×Dic5).82C22, C2.8(C2×Q8×D5), (C2×C4⋊C4)⋊18D5, C53(C2×C22⋊Q8), (C10×C4⋊C4)⋊15C2, (D5×C22×C4).5C2, (C5×C4⋊C4)⋊48C22, (C2×C4⋊Dic5)⋊21C2, C10.72(C2×C4○D4), (C2×C10).94(C2×Q8), (C2×C10).175(C2×D4), C2.15(C2×D42D5), (C2×C4×D5).314C22, (C2×C4).143(C22×D5), (C2×D10⋊C4).21C2, (C2×C10).172(C4○D4), SmallGroup(320,1181)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×D102Q8
C1C5C10C2×C10C22×D5C23×D5D5×C22×C4 — C2×D102Q8
C5C2×C10 — C2×D102Q8

Subgroups: 1134 in 322 conjugacy classes, 135 normal (21 characteristic)
C1, C2 [×3], C2 [×4], C2 [×4], C4 [×4], C4 [×10], C22, C22 [×6], C22 [×16], C5, C2×C4 [×10], C2×C4 [×24], Q8 [×8], C23, C23 [×10], D5 [×4], C10 [×3], C10 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C4⋊C4 [×8], C22×C4, C22×C4 [×2], C22×C4 [×11], C2×Q8 [×8], C24, Dic5 [×6], C20 [×4], C20 [×4], D10 [×4], D10 [×12], C2×C10, C2×C10 [×6], C2×C22⋊C4 [×2], C2×C4⋊C4, C2×C4⋊C4 [×2], C22⋊Q8 [×8], C23×C4, C22×Q8, Dic10 [×8], C4×D5 [×8], C2×Dic5 [×6], C2×Dic5 [×6], C2×C20 [×10], C2×C20 [×4], C22×D5 [×6], C22×D5 [×4], C22×C10, C2×C22⋊Q8, C4⋊Dic5 [×8], D10⋊C4 [×8], C5×C4⋊C4 [×4], C2×Dic10 [×4], C2×Dic10 [×4], C2×C4×D5 [×4], C2×C4×D5 [×4], C22×Dic5, C22×Dic5 [×2], C22×C20, C22×C20 [×2], C23×D5, D102Q8 [×8], C2×C4⋊Dic5 [×2], C2×D10⋊C4 [×2], C10×C4⋊C4, C22×Dic10, D5×C22×C4, C2×D102Q8

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], Q8 [×4], C23 [×15], D5, C2×D4 [×6], C2×Q8 [×6], C4○D4 [×2], C24, D10 [×7], C22⋊Q8 [×4], C22×D4, C22×Q8, C2×C4○D4, D20 [×4], C22×D5 [×7], C2×C22⋊Q8, C2×D20 [×6], D42D5 [×2], Q8×D5 [×2], C23×D5, D102Q8 [×4], C22×D20, C2×D42D5, C2×Q8×D5, C2×D102Q8

Generators and relations
 G = < a,b,c,d,e | a2=b10=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, cbc=dbd-1=b-1, be=eb, dcd-1=b3c, ce=ec, ede-1=d-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 105)(2 106)(3 107)(4 108)(5 109)(6 110)(7 101)(8 102)(9 103)(10 104)(11 72)(12 73)(13 74)(14 75)(15 76)(16 77)(17 78)(18 79)(19 80)(20 71)(21 98)(22 99)(23 100)(24 91)(25 92)(26 93)(27 94)(28 95)(29 96)(30 97)(31 124)(32 125)(33 126)(34 127)(35 128)(36 129)(37 130)(38 121)(39 122)(40 123)(41 118)(42 119)(43 120)(44 111)(45 112)(46 113)(47 114)(48 115)(49 116)(50 117)(51 144)(52 145)(53 146)(54 147)(55 148)(56 149)(57 150)(58 141)(59 142)(60 143)(61 138)(62 139)(63 140)(64 131)(65 132)(66 133)(67 134)(68 135)(69 136)(70 137)(81 158)(82 159)(83 160)(84 151)(85 152)(86 153)(87 154)(88 155)(89 156)(90 157)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 104)(2 103)(3 102)(4 101)(5 110)(6 109)(7 108)(8 107)(9 106)(10 105)(11 76)(12 75)(13 74)(14 73)(15 72)(16 71)(17 80)(18 79)(19 78)(20 77)(21 95)(22 94)(23 93)(24 92)(25 91)(26 100)(27 99)(28 98)(29 97)(30 96)(31 130)(32 129)(33 128)(34 127)(35 126)(36 125)(37 124)(38 123)(39 122)(40 121)(41 120)(42 119)(43 118)(44 117)(45 116)(46 115)(47 114)(48 113)(49 112)(50 111)(51 145)(52 144)(53 143)(54 142)(55 141)(56 150)(57 149)(58 148)(59 147)(60 146)(61 135)(62 134)(63 133)(64 132)(65 131)(66 140)(67 139)(68 138)(69 137)(70 136)(81 160)(82 159)(83 158)(84 157)(85 156)(86 155)(87 154)(88 153)(89 152)(90 151)
(1 117 25 130)(2 116 26 129)(3 115 27 128)(4 114 28 127)(5 113 29 126)(6 112 30 125)(7 111 21 124)(8 120 22 123)(9 119 23 122)(10 118 24 121)(11 70 152 57)(12 69 153 56)(13 68 154 55)(14 67 155 54)(15 66 156 53)(16 65 157 52)(17 64 158 51)(18 63 159 60)(19 62 160 59)(20 61 151 58)(31 101 44 98)(32 110 45 97)(33 109 46 96)(34 108 47 95)(35 107 48 94)(36 106 49 93)(37 105 50 92)(38 104 41 91)(39 103 42 100)(40 102 43 99)(71 138 84 141)(72 137 85 150)(73 136 86 149)(74 135 87 148)(75 134 88 147)(76 133 89 146)(77 132 90 145)(78 131 81 144)(79 140 82 143)(80 139 83 142)
(1 65 25 52)(2 66 26 53)(3 67 27 54)(4 68 28 55)(5 69 29 56)(6 70 30 57)(7 61 21 58)(8 62 22 59)(9 63 23 60)(10 64 24 51)(11 125 152 112)(12 126 153 113)(13 127 154 114)(14 128 155 115)(15 129 156 116)(16 130 157 117)(17 121 158 118)(18 122 159 119)(19 123 160 120)(20 124 151 111)(31 84 44 71)(32 85 45 72)(33 86 46 73)(34 87 47 74)(35 88 48 75)(36 89 49 76)(37 90 50 77)(38 81 41 78)(39 82 42 79)(40 83 43 80)(91 144 104 131)(92 145 105 132)(93 146 106 133)(94 147 107 134)(95 148 108 135)(96 149 109 136)(97 150 110 137)(98 141 101 138)(99 142 102 139)(100 143 103 140)

G:=sub<Sym(160)| (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,101)(8,102)(9,103)(10,104)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,71)(21,98)(22,99)(23,100)(24,91)(25,92)(26,93)(27,94)(28,95)(29,96)(30,97)(31,124)(32,125)(33,126)(34,127)(35,128)(36,129)(37,130)(38,121)(39,122)(40,123)(41,118)(42,119)(43,120)(44,111)(45,112)(46,113)(47,114)(48,115)(49,116)(50,117)(51,144)(52,145)(53,146)(54,147)(55,148)(56,149)(57,150)(58,141)(59,142)(60,143)(61,138)(62,139)(63,140)(64,131)(65,132)(66,133)(67,134)(68,135)(69,136)(70,137)(81,158)(82,159)(83,160)(84,151)(85,152)(86,153)(87,154)(88,155)(89,156)(90,157), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104)(2,103)(3,102)(4,101)(5,110)(6,109)(7,108)(8,107)(9,106)(10,105)(11,76)(12,75)(13,74)(14,73)(15,72)(16,71)(17,80)(18,79)(19,78)(20,77)(21,95)(22,94)(23,93)(24,92)(25,91)(26,100)(27,99)(28,98)(29,97)(30,96)(31,130)(32,129)(33,128)(34,127)(35,126)(36,125)(37,124)(38,123)(39,122)(40,121)(41,120)(42,119)(43,118)(44,117)(45,116)(46,115)(47,114)(48,113)(49,112)(50,111)(51,145)(52,144)(53,143)(54,142)(55,141)(56,150)(57,149)(58,148)(59,147)(60,146)(61,135)(62,134)(63,133)(64,132)(65,131)(66,140)(67,139)(68,138)(69,137)(70,136)(81,160)(82,159)(83,158)(84,157)(85,156)(86,155)(87,154)(88,153)(89,152)(90,151), (1,117,25,130)(2,116,26,129)(3,115,27,128)(4,114,28,127)(5,113,29,126)(6,112,30,125)(7,111,21,124)(8,120,22,123)(9,119,23,122)(10,118,24,121)(11,70,152,57)(12,69,153,56)(13,68,154,55)(14,67,155,54)(15,66,156,53)(16,65,157,52)(17,64,158,51)(18,63,159,60)(19,62,160,59)(20,61,151,58)(31,101,44,98)(32,110,45,97)(33,109,46,96)(34,108,47,95)(35,107,48,94)(36,106,49,93)(37,105,50,92)(38,104,41,91)(39,103,42,100)(40,102,43,99)(71,138,84,141)(72,137,85,150)(73,136,86,149)(74,135,87,148)(75,134,88,147)(76,133,89,146)(77,132,90,145)(78,131,81,144)(79,140,82,143)(80,139,83,142), (1,65,25,52)(2,66,26,53)(3,67,27,54)(4,68,28,55)(5,69,29,56)(6,70,30,57)(7,61,21,58)(8,62,22,59)(9,63,23,60)(10,64,24,51)(11,125,152,112)(12,126,153,113)(13,127,154,114)(14,128,155,115)(15,129,156,116)(16,130,157,117)(17,121,158,118)(18,122,159,119)(19,123,160,120)(20,124,151,111)(31,84,44,71)(32,85,45,72)(33,86,46,73)(34,87,47,74)(35,88,48,75)(36,89,49,76)(37,90,50,77)(38,81,41,78)(39,82,42,79)(40,83,43,80)(91,144,104,131)(92,145,105,132)(93,146,106,133)(94,147,107,134)(95,148,108,135)(96,149,109,136)(97,150,110,137)(98,141,101,138)(99,142,102,139)(100,143,103,140)>;

G:=Group( (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,101)(8,102)(9,103)(10,104)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,71)(21,98)(22,99)(23,100)(24,91)(25,92)(26,93)(27,94)(28,95)(29,96)(30,97)(31,124)(32,125)(33,126)(34,127)(35,128)(36,129)(37,130)(38,121)(39,122)(40,123)(41,118)(42,119)(43,120)(44,111)(45,112)(46,113)(47,114)(48,115)(49,116)(50,117)(51,144)(52,145)(53,146)(54,147)(55,148)(56,149)(57,150)(58,141)(59,142)(60,143)(61,138)(62,139)(63,140)(64,131)(65,132)(66,133)(67,134)(68,135)(69,136)(70,137)(81,158)(82,159)(83,160)(84,151)(85,152)(86,153)(87,154)(88,155)(89,156)(90,157), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104)(2,103)(3,102)(4,101)(5,110)(6,109)(7,108)(8,107)(9,106)(10,105)(11,76)(12,75)(13,74)(14,73)(15,72)(16,71)(17,80)(18,79)(19,78)(20,77)(21,95)(22,94)(23,93)(24,92)(25,91)(26,100)(27,99)(28,98)(29,97)(30,96)(31,130)(32,129)(33,128)(34,127)(35,126)(36,125)(37,124)(38,123)(39,122)(40,121)(41,120)(42,119)(43,118)(44,117)(45,116)(46,115)(47,114)(48,113)(49,112)(50,111)(51,145)(52,144)(53,143)(54,142)(55,141)(56,150)(57,149)(58,148)(59,147)(60,146)(61,135)(62,134)(63,133)(64,132)(65,131)(66,140)(67,139)(68,138)(69,137)(70,136)(81,160)(82,159)(83,158)(84,157)(85,156)(86,155)(87,154)(88,153)(89,152)(90,151), (1,117,25,130)(2,116,26,129)(3,115,27,128)(4,114,28,127)(5,113,29,126)(6,112,30,125)(7,111,21,124)(8,120,22,123)(9,119,23,122)(10,118,24,121)(11,70,152,57)(12,69,153,56)(13,68,154,55)(14,67,155,54)(15,66,156,53)(16,65,157,52)(17,64,158,51)(18,63,159,60)(19,62,160,59)(20,61,151,58)(31,101,44,98)(32,110,45,97)(33,109,46,96)(34,108,47,95)(35,107,48,94)(36,106,49,93)(37,105,50,92)(38,104,41,91)(39,103,42,100)(40,102,43,99)(71,138,84,141)(72,137,85,150)(73,136,86,149)(74,135,87,148)(75,134,88,147)(76,133,89,146)(77,132,90,145)(78,131,81,144)(79,140,82,143)(80,139,83,142), (1,65,25,52)(2,66,26,53)(3,67,27,54)(4,68,28,55)(5,69,29,56)(6,70,30,57)(7,61,21,58)(8,62,22,59)(9,63,23,60)(10,64,24,51)(11,125,152,112)(12,126,153,113)(13,127,154,114)(14,128,155,115)(15,129,156,116)(16,130,157,117)(17,121,158,118)(18,122,159,119)(19,123,160,120)(20,124,151,111)(31,84,44,71)(32,85,45,72)(33,86,46,73)(34,87,47,74)(35,88,48,75)(36,89,49,76)(37,90,50,77)(38,81,41,78)(39,82,42,79)(40,83,43,80)(91,144,104,131)(92,145,105,132)(93,146,106,133)(94,147,107,134)(95,148,108,135)(96,149,109,136)(97,150,110,137)(98,141,101,138)(99,142,102,139)(100,143,103,140) );

G=PermutationGroup([(1,105),(2,106),(3,107),(4,108),(5,109),(6,110),(7,101),(8,102),(9,103),(10,104),(11,72),(12,73),(13,74),(14,75),(15,76),(16,77),(17,78),(18,79),(19,80),(20,71),(21,98),(22,99),(23,100),(24,91),(25,92),(26,93),(27,94),(28,95),(29,96),(30,97),(31,124),(32,125),(33,126),(34,127),(35,128),(36,129),(37,130),(38,121),(39,122),(40,123),(41,118),(42,119),(43,120),(44,111),(45,112),(46,113),(47,114),(48,115),(49,116),(50,117),(51,144),(52,145),(53,146),(54,147),(55,148),(56,149),(57,150),(58,141),(59,142),(60,143),(61,138),(62,139),(63,140),(64,131),(65,132),(66,133),(67,134),(68,135),(69,136),(70,137),(81,158),(82,159),(83,160),(84,151),(85,152),(86,153),(87,154),(88,155),(89,156),(90,157)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,104),(2,103),(3,102),(4,101),(5,110),(6,109),(7,108),(8,107),(9,106),(10,105),(11,76),(12,75),(13,74),(14,73),(15,72),(16,71),(17,80),(18,79),(19,78),(20,77),(21,95),(22,94),(23,93),(24,92),(25,91),(26,100),(27,99),(28,98),(29,97),(30,96),(31,130),(32,129),(33,128),(34,127),(35,126),(36,125),(37,124),(38,123),(39,122),(40,121),(41,120),(42,119),(43,118),(44,117),(45,116),(46,115),(47,114),(48,113),(49,112),(50,111),(51,145),(52,144),(53,143),(54,142),(55,141),(56,150),(57,149),(58,148),(59,147),(60,146),(61,135),(62,134),(63,133),(64,132),(65,131),(66,140),(67,139),(68,138),(69,137),(70,136),(81,160),(82,159),(83,158),(84,157),(85,156),(86,155),(87,154),(88,153),(89,152),(90,151)], [(1,117,25,130),(2,116,26,129),(3,115,27,128),(4,114,28,127),(5,113,29,126),(6,112,30,125),(7,111,21,124),(8,120,22,123),(9,119,23,122),(10,118,24,121),(11,70,152,57),(12,69,153,56),(13,68,154,55),(14,67,155,54),(15,66,156,53),(16,65,157,52),(17,64,158,51),(18,63,159,60),(19,62,160,59),(20,61,151,58),(31,101,44,98),(32,110,45,97),(33,109,46,96),(34,108,47,95),(35,107,48,94),(36,106,49,93),(37,105,50,92),(38,104,41,91),(39,103,42,100),(40,102,43,99),(71,138,84,141),(72,137,85,150),(73,136,86,149),(74,135,87,148),(75,134,88,147),(76,133,89,146),(77,132,90,145),(78,131,81,144),(79,140,82,143),(80,139,83,142)], [(1,65,25,52),(2,66,26,53),(3,67,27,54),(4,68,28,55),(5,69,29,56),(6,70,30,57),(7,61,21,58),(8,62,22,59),(9,63,23,60),(10,64,24,51),(11,125,152,112),(12,126,153,113),(13,127,154,114),(14,128,155,115),(15,129,156,116),(16,130,157,117),(17,121,158,118),(18,122,159,119),(19,123,160,120),(20,124,151,111),(31,84,44,71),(32,85,45,72),(33,86,46,73),(34,87,47,74),(35,88,48,75),(36,89,49,76),(37,90,50,77),(38,81,41,78),(39,82,42,79),(40,83,43,80),(91,144,104,131),(92,145,105,132),(93,146,106,133),(94,147,107,134),(95,148,108,135),(96,149,109,136),(97,150,110,137),(98,141,101,138),(99,142,102,139),(100,143,103,140)])

Matrix representation G ⊆ GL5(𝔽41)

400000
01000
00100
00010
00001
,
10000
040000
004000
00007
0003535
,
10000
040000
015100
000400
000361
,
400000
017500
0242400
0002514
0001416
,
400000
032000
012900
000400
000040

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,0,35,0,0,0,7,35],[1,0,0,0,0,0,40,15,0,0,0,0,1,0,0,0,0,0,40,36,0,0,0,0,1],[40,0,0,0,0,0,17,24,0,0,0,5,24,0,0,0,0,0,25,14,0,0,0,14,16],[40,0,0,0,0,0,32,12,0,0,0,0,9,0,0,0,0,0,40,0,0,0,0,0,40] >;

68 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P5A5B10A···10N20A···20X
order12···2222244444444444444445510···1020···20
size11···110101010222244441010101020202020222···24···4

68 irreducible representations

dim1111111222222244
type++++++++-++++--
imageC1C2C2C2C2C2C2D4Q8D5C4○D4D10D10D20D42D5Q8×D5
kernelC2×D102Q8D102Q8C2×C4⋊Dic5C2×D10⋊C4C10×C4⋊C4C22×Dic10D5×C22×C4C2×C20C22×D5C2×C4⋊C4C2×C10C4⋊C4C22×C4C2×C4C22C22
# reps18221114424861644

In GAP, Magma, Sage, TeX

C_2\times D_{10}\rtimes_2Q_8
% in TeX

G:=Group("C2xD10:2Q8");
// GroupNames label

G:=SmallGroup(320,1181);
// by ID

G=gap.SmallGroup(320,1181);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,675,297,192,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^10=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=b^3*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽