Copied to
clipboard

?

G = C2×D20.3C4order 320 = 26·5

Direct product of C2 and D20.3C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D20.3C4, C40.71C23, C20.67C24, (C2×C8)⋊37D10, C103(C8○D4), (C22×C8)⋊13D5, (C22×C40)⋊19C2, (C2×C40)⋊49C22, C4○D20.11C4, (C2×D20).31C4, D20.44(C2×C4), (C8×D5)⋊19C22, C4.66(C23×D5), C8.65(C22×D5), C23.39(C4×D5), C8⋊D521C22, C10.51(C23×C4), C52C8.31C23, (C4×D5).70C23, (C2×C20).880C23, C20.180(C22×C4), (C2×Dic10).32C4, Dic10.47(C2×C4), C4○D20.58C22, D10.21(C22×C4), (C22×C4).441D10, C4.Dic539C22, Dic5.20(C22×C4), (C22×C20).544C22, C54(C2×C8○D4), (D5×C2×C8)⋊25C2, C4.121(C2×C4×D5), C5⋊D4.9(C2×C4), (C2×C8⋊D5)⋊29C2, C22.11(C2×C4×D5), C2.31(D5×C22×C4), (C4×D5).59(C2×C4), (C2×C4).119(C4×D5), (C2×C5⋊D4).28C4, (C2×C20).409(C2×C4), (C2×C4○D20).29C2, (C2×C4.Dic5)⋊33C2, (C2×C4×D5).385C22, (C22×D5).82(C2×C4), (C2×C4).824(C22×D5), (C2×C10).257(C22×C4), (C22×C10).171(C2×C4), (C2×C52C8).335C22, (C2×Dic5).116(C2×C4), SmallGroup(320,1410)

Series: Derived Chief Lower central Upper central

C1C10 — C2×D20.3C4
C1C5C10C20C4×D5C2×C4×D5C2×C4○D20 — C2×D20.3C4
C5C10 — C2×D20.3C4

Subgroups: 718 in 266 conjugacy classes, 151 normal (29 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×2], C4 [×2], C4 [×4], C22, C22 [×2], C22 [×10], C5, C8 [×4], C8 [×4], C2×C4 [×2], C2×C4 [×4], C2×C4 [×10], D4 [×12], Q8 [×4], C23, C23 [×2], D5 [×4], C10, C10 [×2], C10 [×2], C2×C8 [×2], C2×C8 [×4], C2×C8 [×10], M4(2) [×12], C22×C4, C22×C4 [×2], C2×D4 [×3], C2×Q8, C4○D4 [×8], Dic5 [×4], C20 [×2], C20 [×2], D10 [×4], D10 [×4], C2×C10, C2×C10 [×2], C2×C10 [×2], C22×C8, C22×C8 [×2], C2×M4(2) [×3], C8○D4 [×8], C2×C4○D4, C52C8 [×4], C40 [×4], Dic10 [×4], C4×D5 [×8], D20 [×4], C2×Dic5 [×2], C5⋊D4 [×8], C2×C20 [×2], C2×C20 [×4], C22×D5 [×2], C22×C10, C2×C8○D4, C8×D5 [×8], C8⋊D5 [×8], C2×C52C8 [×2], C4.Dic5 [×4], C2×C40 [×2], C2×C40 [×4], C2×Dic10, C2×C4×D5 [×2], C2×D20, C4○D20 [×8], C2×C5⋊D4 [×2], C22×C20, D5×C2×C8 [×2], C2×C8⋊D5 [×2], D20.3C4 [×8], C2×C4.Dic5, C22×C40, C2×C4○D20, C2×D20.3C4

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], D5, C22×C4 [×14], C24, D10 [×7], C8○D4 [×2], C23×C4, C4×D5 [×4], C22×D5 [×7], C2×C8○D4, C2×C4×D5 [×6], C23×D5, D20.3C4 [×2], D5×C22×C4, C2×D20.3C4

Generators and relations
 G = < a,b,c,d | a2=b20=c2=1, d4=b10, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, cd=dc >

Smallest permutation representation
On 160 points
Generators in S160
(1 123)(2 124)(3 125)(4 126)(5 127)(6 128)(7 129)(8 130)(9 131)(10 132)(11 133)(12 134)(13 135)(14 136)(15 137)(16 138)(17 139)(18 140)(19 121)(20 122)(21 146)(22 147)(23 148)(24 149)(25 150)(26 151)(27 152)(28 153)(29 154)(30 155)(31 156)(32 157)(33 158)(34 159)(35 160)(36 141)(37 142)(38 143)(39 144)(40 145)(41 62)(42 63)(43 64)(44 65)(45 66)(46 67)(47 68)(48 69)(49 70)(50 71)(51 72)(52 73)(53 74)(54 75)(55 76)(56 77)(57 78)(58 79)(59 80)(60 61)(81 104)(82 105)(83 106)(84 107)(85 108)(86 109)(87 110)(88 111)(89 112)(90 113)(91 114)(92 115)(93 116)(94 117)(95 118)(96 119)(97 120)(98 101)(99 102)(100 103)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 132)(2 131)(3 130)(4 129)(5 128)(6 127)(7 126)(8 125)(9 124)(10 123)(11 122)(12 121)(13 140)(14 139)(15 138)(16 137)(17 136)(18 135)(19 134)(20 133)(21 155)(22 154)(23 153)(24 152)(25 151)(26 150)(27 149)(28 148)(29 147)(30 146)(31 145)(32 144)(33 143)(34 142)(35 141)(36 160)(37 159)(38 158)(39 157)(40 156)(41 63)(42 62)(43 61)(44 80)(45 79)(46 78)(47 77)(48 76)(49 75)(50 74)(51 73)(52 72)(53 71)(54 70)(55 69)(56 68)(57 67)(58 66)(59 65)(60 64)(81 117)(82 116)(83 115)(84 114)(85 113)(86 112)(87 111)(88 110)(89 109)(90 108)(91 107)(92 106)(93 105)(94 104)(95 103)(96 102)(97 101)(98 120)(99 119)(100 118)
(1 57 31 116 11 47 21 106)(2 58 32 117 12 48 22 107)(3 59 33 118 13 49 23 108)(4 60 34 119 14 50 24 109)(5 41 35 120 15 51 25 110)(6 42 36 101 16 52 26 111)(7 43 37 102 17 53 27 112)(8 44 38 103 18 54 28 113)(9 45 39 104 19 55 29 114)(10 46 40 105 20 56 30 115)(61 159 96 136 71 149 86 126)(62 160 97 137 72 150 87 127)(63 141 98 138 73 151 88 128)(64 142 99 139 74 152 89 129)(65 143 100 140 75 153 90 130)(66 144 81 121 76 154 91 131)(67 145 82 122 77 155 92 132)(68 146 83 123 78 156 93 133)(69 147 84 124 79 157 94 134)(70 148 85 125 80 158 95 135)

G:=sub<Sym(160)| (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,129)(8,130)(9,131)(10,132)(11,133)(12,134)(13,135)(14,136)(15,137)(16,138)(17,139)(18,140)(19,121)(20,122)(21,146)(22,147)(23,148)(24,149)(25,150)(26,151)(27,152)(28,153)(29,154)(30,155)(31,156)(32,157)(33,158)(34,159)(35,160)(36,141)(37,142)(38,143)(39,144)(40,145)(41,62)(42,63)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(57,78)(58,79)(59,80)(60,61)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111)(89,112)(90,113)(91,114)(92,115)(93,116)(94,117)(95,118)(96,119)(97,120)(98,101)(99,102)(100,103), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,132)(2,131)(3,130)(4,129)(5,128)(6,127)(7,126)(8,125)(9,124)(10,123)(11,122)(12,121)(13,140)(14,139)(15,138)(16,137)(17,136)(18,135)(19,134)(20,133)(21,155)(22,154)(23,153)(24,152)(25,151)(26,150)(27,149)(28,148)(29,147)(30,146)(31,145)(32,144)(33,143)(34,142)(35,141)(36,160)(37,159)(38,158)(39,157)(40,156)(41,63)(42,62)(43,61)(44,80)(45,79)(46,78)(47,77)(48,76)(49,75)(50,74)(51,73)(52,72)(53,71)(54,70)(55,69)(56,68)(57,67)(58,66)(59,65)(60,64)(81,117)(82,116)(83,115)(84,114)(85,113)(86,112)(87,111)(88,110)(89,109)(90,108)(91,107)(92,106)(93,105)(94,104)(95,103)(96,102)(97,101)(98,120)(99,119)(100,118), (1,57,31,116,11,47,21,106)(2,58,32,117,12,48,22,107)(3,59,33,118,13,49,23,108)(4,60,34,119,14,50,24,109)(5,41,35,120,15,51,25,110)(6,42,36,101,16,52,26,111)(7,43,37,102,17,53,27,112)(8,44,38,103,18,54,28,113)(9,45,39,104,19,55,29,114)(10,46,40,105,20,56,30,115)(61,159,96,136,71,149,86,126)(62,160,97,137,72,150,87,127)(63,141,98,138,73,151,88,128)(64,142,99,139,74,152,89,129)(65,143,100,140,75,153,90,130)(66,144,81,121,76,154,91,131)(67,145,82,122,77,155,92,132)(68,146,83,123,78,156,93,133)(69,147,84,124,79,157,94,134)(70,148,85,125,80,158,95,135)>;

G:=Group( (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,129)(8,130)(9,131)(10,132)(11,133)(12,134)(13,135)(14,136)(15,137)(16,138)(17,139)(18,140)(19,121)(20,122)(21,146)(22,147)(23,148)(24,149)(25,150)(26,151)(27,152)(28,153)(29,154)(30,155)(31,156)(32,157)(33,158)(34,159)(35,160)(36,141)(37,142)(38,143)(39,144)(40,145)(41,62)(42,63)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(57,78)(58,79)(59,80)(60,61)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111)(89,112)(90,113)(91,114)(92,115)(93,116)(94,117)(95,118)(96,119)(97,120)(98,101)(99,102)(100,103), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,132)(2,131)(3,130)(4,129)(5,128)(6,127)(7,126)(8,125)(9,124)(10,123)(11,122)(12,121)(13,140)(14,139)(15,138)(16,137)(17,136)(18,135)(19,134)(20,133)(21,155)(22,154)(23,153)(24,152)(25,151)(26,150)(27,149)(28,148)(29,147)(30,146)(31,145)(32,144)(33,143)(34,142)(35,141)(36,160)(37,159)(38,158)(39,157)(40,156)(41,63)(42,62)(43,61)(44,80)(45,79)(46,78)(47,77)(48,76)(49,75)(50,74)(51,73)(52,72)(53,71)(54,70)(55,69)(56,68)(57,67)(58,66)(59,65)(60,64)(81,117)(82,116)(83,115)(84,114)(85,113)(86,112)(87,111)(88,110)(89,109)(90,108)(91,107)(92,106)(93,105)(94,104)(95,103)(96,102)(97,101)(98,120)(99,119)(100,118), (1,57,31,116,11,47,21,106)(2,58,32,117,12,48,22,107)(3,59,33,118,13,49,23,108)(4,60,34,119,14,50,24,109)(5,41,35,120,15,51,25,110)(6,42,36,101,16,52,26,111)(7,43,37,102,17,53,27,112)(8,44,38,103,18,54,28,113)(9,45,39,104,19,55,29,114)(10,46,40,105,20,56,30,115)(61,159,96,136,71,149,86,126)(62,160,97,137,72,150,87,127)(63,141,98,138,73,151,88,128)(64,142,99,139,74,152,89,129)(65,143,100,140,75,153,90,130)(66,144,81,121,76,154,91,131)(67,145,82,122,77,155,92,132)(68,146,83,123,78,156,93,133)(69,147,84,124,79,157,94,134)(70,148,85,125,80,158,95,135) );

G=PermutationGroup([(1,123),(2,124),(3,125),(4,126),(5,127),(6,128),(7,129),(8,130),(9,131),(10,132),(11,133),(12,134),(13,135),(14,136),(15,137),(16,138),(17,139),(18,140),(19,121),(20,122),(21,146),(22,147),(23,148),(24,149),(25,150),(26,151),(27,152),(28,153),(29,154),(30,155),(31,156),(32,157),(33,158),(34,159),(35,160),(36,141),(37,142),(38,143),(39,144),(40,145),(41,62),(42,63),(43,64),(44,65),(45,66),(46,67),(47,68),(48,69),(49,70),(50,71),(51,72),(52,73),(53,74),(54,75),(55,76),(56,77),(57,78),(58,79),(59,80),(60,61),(81,104),(82,105),(83,106),(84,107),(85,108),(86,109),(87,110),(88,111),(89,112),(90,113),(91,114),(92,115),(93,116),(94,117),(95,118),(96,119),(97,120),(98,101),(99,102),(100,103)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,132),(2,131),(3,130),(4,129),(5,128),(6,127),(7,126),(8,125),(9,124),(10,123),(11,122),(12,121),(13,140),(14,139),(15,138),(16,137),(17,136),(18,135),(19,134),(20,133),(21,155),(22,154),(23,153),(24,152),(25,151),(26,150),(27,149),(28,148),(29,147),(30,146),(31,145),(32,144),(33,143),(34,142),(35,141),(36,160),(37,159),(38,158),(39,157),(40,156),(41,63),(42,62),(43,61),(44,80),(45,79),(46,78),(47,77),(48,76),(49,75),(50,74),(51,73),(52,72),(53,71),(54,70),(55,69),(56,68),(57,67),(58,66),(59,65),(60,64),(81,117),(82,116),(83,115),(84,114),(85,113),(86,112),(87,111),(88,110),(89,109),(90,108),(91,107),(92,106),(93,105),(94,104),(95,103),(96,102),(97,101),(98,120),(99,119),(100,118)], [(1,57,31,116,11,47,21,106),(2,58,32,117,12,48,22,107),(3,59,33,118,13,49,23,108),(4,60,34,119,14,50,24,109),(5,41,35,120,15,51,25,110),(6,42,36,101,16,52,26,111),(7,43,37,102,17,53,27,112),(8,44,38,103,18,54,28,113),(9,45,39,104,19,55,29,114),(10,46,40,105,20,56,30,115),(61,159,96,136,71,149,86,126),(62,160,97,137,72,150,87,127),(63,141,98,138,73,151,88,128),(64,142,99,139,74,152,89,129),(65,143,100,140,75,153,90,130),(66,144,81,121,76,154,91,131),(67,145,82,122,77,155,92,132),(68,146,83,123,78,156,93,133),(69,147,84,124,79,157,94,134),(70,148,85,125,80,158,95,135)])

Matrix representation G ⊆ GL5(𝔽41)

400000
040000
004000
00010
00001
,
10000
093600
003200
000640
00010
,
10000
093600
0163200
000640
0003535
,
320000
014000
001400
000320
000032

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,9,0,0,0,0,36,32,0,0,0,0,0,6,1,0,0,0,40,0],[1,0,0,0,0,0,9,16,0,0,0,36,32,0,0,0,0,0,6,35,0,0,0,40,35],[32,0,0,0,0,0,14,0,0,0,0,0,14,0,0,0,0,0,32,0,0,0,0,0,32] >;

104 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J5A5B8A···8H8I8J8K8L8M···8T10A···10N20A···20P40A···40AF
order12222222224444444444558···888888···810···1020···2040···40
size1111221010101011112210101010221···1222210···102···22···22···2

104 irreducible representations

dim111111111112222222
type++++++++++
imageC1C2C2C2C2C2C2C4C4C4C4D5D10D10C8○D4C4×D5C4×D5D20.3C4
kernelC2×D20.3C4D5×C2×C8C2×C8⋊D5D20.3C4C2×C4.Dic5C22×C40C2×C4○D20C2×Dic10C2×D20C4○D20C2×C5⋊D4C22×C8C2×C8C22×C4C10C2×C4C23C2
# reps122811122842122812432

In GAP, Magma, Sage, TeX

C_2\times D_{20}._3C_4
% in TeX

G:=Group("C2xD20.3C4");
// GroupNames label

G:=SmallGroup(320,1410);
// by ID

G=gap.SmallGroup(320,1410);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,80,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^2=1,d^4=b^10,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,c*d=d*c>;
// generators/relations

׿
×
𝔽