Copied to
clipboard

?

G = C2×D4.10D10order 320 = 26·5

Direct product of C2 and D4.10D10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D4.10D10, C20.48C24, C10.13C25, D10.7C24, D20.40C23, C1022- (1+4), Dic5.8C24, Dic10.37C23, C4○D418D10, (C2×C10).4C24, (Q8×D5)⋊14C22, C4.63(C23×D5), C2.14(D5×C24), C5⋊D4.1C23, (C2×D4).254D10, C52(C2×2- (1+4)), C4○D2026C22, (C2×Q8).212D10, (C4×D5).19C23, D4.29(C22×D5), (C5×D4).29C23, (C5×Q8).30C23, Q8.30(C22×D5), D42D513C22, (C2×C20).567C23, (C22×C4).292D10, C22.57(C23×D5), (C2×Dic10)⋊75C22, (C22×Dic10)⋊25C2, (C2×D20).298C22, (D4×C10).279C22, (Q8×C10).247C22, C23.215(C22×D5), (C22×C10).249C23, (C22×C20).303C22, (C2×Dic5).167C23, (C22×D5).260C23, (C22×Dic5).169C22, (C2×Q8×D5)⋊21C2, (C2×C4○D4)⋊14D5, (C10×C4○D4)⋊15C2, (C2×C4○D20)⋊38C2, (C2×D42D5)⋊30C2, (C5×C4○D4)⋊21C22, (C2×C4×D5).182C22, (C2×C4).253(C22×D5), (C2×C5⋊D4).152C22, SmallGroup(320,1620)

Series: Derived Chief Lower central Upper central

C1C10 — C2×D4.10D10
C1C5C10D10C22×D5C2×C4×D5C2×Q8×D5 — C2×D4.10D10
C5C10 — C2×D4.10D10

Subgroups: 2126 in 794 conjugacy classes, 447 normal (14 characteristic)
C1, C2, C2 [×2], C2 [×10], C4 [×8], C4 [×12], C22, C22 [×6], C22 [×14], C5, C2×C4, C2×C4 [×15], C2×C4 [×54], D4 [×12], D4 [×28], Q8 [×4], Q8 [×36], C23 [×3], C23 [×2], D5 [×4], C10, C10 [×2], C10 [×6], C22×C4 [×3], C22×C4 [×12], C2×D4 [×3], C2×D4 [×7], C2×Q8, C2×Q8 [×49], C4○D4 [×8], C4○D4 [×72], Dic5 [×12], C20 [×8], D10 [×4], D10 [×4], C2×C10, C2×C10 [×6], C2×C10 [×6], C22×Q8 [×5], C2×C4○D4, C2×C4○D4 [×9], 2- (1+4) [×16], Dic10 [×36], C4×D5 [×24], D20 [×4], C2×Dic5 [×30], C5⋊D4 [×24], C2×C20, C2×C20 [×15], C5×D4 [×12], C5×Q8 [×4], C22×D5 [×2], C22×C10 [×3], C2×2- (1+4), C2×Dic10 [×33], C2×C4×D5 [×6], C2×D20, C4○D20 [×24], D42D5 [×48], Q8×D5 [×16], C22×Dic5 [×6], C2×C5⋊D4 [×6], C22×C20 [×3], D4×C10 [×3], Q8×C10, C5×C4○D4 [×8], C22×Dic10 [×3], C2×C4○D20 [×3], C2×D42D5 [×6], C2×Q8×D5 [×2], D4.10D10 [×16], C10×C4○D4, C2×D4.10D10

Quotients:
C1, C2 [×31], C22 [×155], C23 [×155], D5, C24 [×31], D10 [×15], 2- (1+4) [×2], C25, C22×D5 [×35], C2×2- (1+4), C23×D5 [×15], D4.10D10 [×2], D5×C24, C2×D4.10D10

Generators and relations
 G = < a,b,c,d,e | a2=b4=c2=1, d10=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=dbd-1=ebe-1=b-1, dcd-1=b2c, ce=ec, ede-1=d9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 146)(2 147)(3 148)(4 149)(5 150)(6 151)(7 152)(8 153)(9 154)(10 155)(11 156)(12 157)(13 158)(14 159)(15 160)(16 141)(17 142)(18 143)(19 144)(20 145)(21 125)(22 126)(23 127)(24 128)(25 129)(26 130)(27 131)(28 132)(29 133)(30 134)(31 135)(32 136)(33 137)(34 138)(35 139)(36 140)(37 121)(38 122)(39 123)(40 124)(41 108)(42 109)(43 110)(44 111)(45 112)(46 113)(47 114)(48 115)(49 116)(50 117)(51 118)(52 119)(53 120)(54 101)(55 102)(56 103)(57 104)(58 105)(59 106)(60 107)(61 97)(62 98)(63 99)(64 100)(65 81)(66 82)(67 83)(68 84)(69 85)(70 86)(71 87)(72 88)(73 89)(74 90)(75 91)(76 92)(77 93)(78 94)(79 95)(80 96)
(1 89 11 99)(2 100 12 90)(3 91 13 81)(4 82 14 92)(5 93 15 83)(6 84 16 94)(7 95 17 85)(8 86 18 96)(9 97 19 87)(10 88 20 98)(21 107 31 117)(22 118 32 108)(23 109 33 119)(24 120 34 110)(25 111 35 101)(26 102 36 112)(27 113 37 103)(28 104 38 114)(29 115 39 105)(30 106 40 116)(41 126 51 136)(42 137 52 127)(43 128 53 138)(44 139 54 129)(45 130 55 140)(46 121 56 131)(47 132 57 122)(48 123 58 133)(49 134 59 124)(50 125 60 135)(61 144 71 154)(62 155 72 145)(63 146 73 156)(64 157 74 147)(65 148 75 158)(66 159 76 149)(67 150 77 160)(68 141 78 151)(69 152 79 142)(70 143 80 153)
(1 39)(2 30)(3 21)(4 32)(5 23)(6 34)(7 25)(8 36)(9 27)(10 38)(11 29)(12 40)(13 31)(14 22)(15 33)(16 24)(17 35)(18 26)(19 37)(20 28)(41 76)(42 67)(43 78)(44 69)(45 80)(46 71)(47 62)(48 73)(49 64)(50 75)(51 66)(52 77)(53 68)(54 79)(55 70)(56 61)(57 72)(58 63)(59 74)(60 65)(81 107)(82 118)(83 109)(84 120)(85 111)(86 102)(87 113)(88 104)(89 115)(90 106)(91 117)(92 108)(93 119)(94 110)(95 101)(96 112)(97 103)(98 114)(99 105)(100 116)(121 144)(122 155)(123 146)(124 157)(125 148)(126 159)(127 150)(128 141)(129 152)(130 143)(131 154)(132 145)(133 156)(134 147)(135 158)(136 149)(137 160)(138 151)(139 142)(140 153)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 155 11 145)(2 144 12 154)(3 153 13 143)(4 142 14 152)(5 151 15 141)(6 160 16 150)(7 149 17 159)(8 158 18 148)(9 147 19 157)(10 156 20 146)(21 140 31 130)(22 129 32 139)(23 138 33 128)(24 127 34 137)(25 136 35 126)(26 125 36 135)(27 134 37 124)(28 123 38 133)(29 132 39 122)(30 121 40 131)(41 111 51 101)(42 120 52 110)(43 109 53 119)(44 118 54 108)(45 107 55 117)(46 116 56 106)(47 105 57 115)(48 114 58 104)(49 103 59 113)(50 112 60 102)(61 90 71 100)(62 99 72 89)(63 88 73 98)(64 97 74 87)(65 86 75 96)(66 95 76 85)(67 84 77 94)(68 93 78 83)(69 82 79 92)(70 91 80 81)

G:=sub<Sym(160)| (1,146)(2,147)(3,148)(4,149)(5,150)(6,151)(7,152)(8,153)(9,154)(10,155)(11,156)(12,157)(13,158)(14,159)(15,160)(16,141)(17,142)(18,143)(19,144)(20,145)(21,125)(22,126)(23,127)(24,128)(25,129)(26,130)(27,131)(28,132)(29,133)(30,134)(31,135)(32,136)(33,137)(34,138)(35,139)(36,140)(37,121)(38,122)(39,123)(40,124)(41,108)(42,109)(43,110)(44,111)(45,112)(46,113)(47,114)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,101)(55,102)(56,103)(57,104)(58,105)(59,106)(60,107)(61,97)(62,98)(63,99)(64,100)(65,81)(66,82)(67,83)(68,84)(69,85)(70,86)(71,87)(72,88)(73,89)(74,90)(75,91)(76,92)(77,93)(78,94)(79,95)(80,96), (1,89,11,99)(2,100,12,90)(3,91,13,81)(4,82,14,92)(5,93,15,83)(6,84,16,94)(7,95,17,85)(8,86,18,96)(9,97,19,87)(10,88,20,98)(21,107,31,117)(22,118,32,108)(23,109,33,119)(24,120,34,110)(25,111,35,101)(26,102,36,112)(27,113,37,103)(28,104,38,114)(29,115,39,105)(30,106,40,116)(41,126,51,136)(42,137,52,127)(43,128,53,138)(44,139,54,129)(45,130,55,140)(46,121,56,131)(47,132,57,122)(48,123,58,133)(49,134,59,124)(50,125,60,135)(61,144,71,154)(62,155,72,145)(63,146,73,156)(64,157,74,147)(65,148,75,158)(66,159,76,149)(67,150,77,160)(68,141,78,151)(69,152,79,142)(70,143,80,153), (1,39)(2,30)(3,21)(4,32)(5,23)(6,34)(7,25)(8,36)(9,27)(10,38)(11,29)(12,40)(13,31)(14,22)(15,33)(16,24)(17,35)(18,26)(19,37)(20,28)(41,76)(42,67)(43,78)(44,69)(45,80)(46,71)(47,62)(48,73)(49,64)(50,75)(51,66)(52,77)(53,68)(54,79)(55,70)(56,61)(57,72)(58,63)(59,74)(60,65)(81,107)(82,118)(83,109)(84,120)(85,111)(86,102)(87,113)(88,104)(89,115)(90,106)(91,117)(92,108)(93,119)(94,110)(95,101)(96,112)(97,103)(98,114)(99,105)(100,116)(121,144)(122,155)(123,146)(124,157)(125,148)(126,159)(127,150)(128,141)(129,152)(130,143)(131,154)(132,145)(133,156)(134,147)(135,158)(136,149)(137,160)(138,151)(139,142)(140,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,155,11,145)(2,144,12,154)(3,153,13,143)(4,142,14,152)(5,151,15,141)(6,160,16,150)(7,149,17,159)(8,158,18,148)(9,147,19,157)(10,156,20,146)(21,140,31,130)(22,129,32,139)(23,138,33,128)(24,127,34,137)(25,136,35,126)(26,125,36,135)(27,134,37,124)(28,123,38,133)(29,132,39,122)(30,121,40,131)(41,111,51,101)(42,120,52,110)(43,109,53,119)(44,118,54,108)(45,107,55,117)(46,116,56,106)(47,105,57,115)(48,114,58,104)(49,103,59,113)(50,112,60,102)(61,90,71,100)(62,99,72,89)(63,88,73,98)(64,97,74,87)(65,86,75,96)(66,95,76,85)(67,84,77,94)(68,93,78,83)(69,82,79,92)(70,91,80,81)>;

G:=Group( (1,146)(2,147)(3,148)(4,149)(5,150)(6,151)(7,152)(8,153)(9,154)(10,155)(11,156)(12,157)(13,158)(14,159)(15,160)(16,141)(17,142)(18,143)(19,144)(20,145)(21,125)(22,126)(23,127)(24,128)(25,129)(26,130)(27,131)(28,132)(29,133)(30,134)(31,135)(32,136)(33,137)(34,138)(35,139)(36,140)(37,121)(38,122)(39,123)(40,124)(41,108)(42,109)(43,110)(44,111)(45,112)(46,113)(47,114)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,101)(55,102)(56,103)(57,104)(58,105)(59,106)(60,107)(61,97)(62,98)(63,99)(64,100)(65,81)(66,82)(67,83)(68,84)(69,85)(70,86)(71,87)(72,88)(73,89)(74,90)(75,91)(76,92)(77,93)(78,94)(79,95)(80,96), (1,89,11,99)(2,100,12,90)(3,91,13,81)(4,82,14,92)(5,93,15,83)(6,84,16,94)(7,95,17,85)(8,86,18,96)(9,97,19,87)(10,88,20,98)(21,107,31,117)(22,118,32,108)(23,109,33,119)(24,120,34,110)(25,111,35,101)(26,102,36,112)(27,113,37,103)(28,104,38,114)(29,115,39,105)(30,106,40,116)(41,126,51,136)(42,137,52,127)(43,128,53,138)(44,139,54,129)(45,130,55,140)(46,121,56,131)(47,132,57,122)(48,123,58,133)(49,134,59,124)(50,125,60,135)(61,144,71,154)(62,155,72,145)(63,146,73,156)(64,157,74,147)(65,148,75,158)(66,159,76,149)(67,150,77,160)(68,141,78,151)(69,152,79,142)(70,143,80,153), (1,39)(2,30)(3,21)(4,32)(5,23)(6,34)(7,25)(8,36)(9,27)(10,38)(11,29)(12,40)(13,31)(14,22)(15,33)(16,24)(17,35)(18,26)(19,37)(20,28)(41,76)(42,67)(43,78)(44,69)(45,80)(46,71)(47,62)(48,73)(49,64)(50,75)(51,66)(52,77)(53,68)(54,79)(55,70)(56,61)(57,72)(58,63)(59,74)(60,65)(81,107)(82,118)(83,109)(84,120)(85,111)(86,102)(87,113)(88,104)(89,115)(90,106)(91,117)(92,108)(93,119)(94,110)(95,101)(96,112)(97,103)(98,114)(99,105)(100,116)(121,144)(122,155)(123,146)(124,157)(125,148)(126,159)(127,150)(128,141)(129,152)(130,143)(131,154)(132,145)(133,156)(134,147)(135,158)(136,149)(137,160)(138,151)(139,142)(140,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,155,11,145)(2,144,12,154)(3,153,13,143)(4,142,14,152)(5,151,15,141)(6,160,16,150)(7,149,17,159)(8,158,18,148)(9,147,19,157)(10,156,20,146)(21,140,31,130)(22,129,32,139)(23,138,33,128)(24,127,34,137)(25,136,35,126)(26,125,36,135)(27,134,37,124)(28,123,38,133)(29,132,39,122)(30,121,40,131)(41,111,51,101)(42,120,52,110)(43,109,53,119)(44,118,54,108)(45,107,55,117)(46,116,56,106)(47,105,57,115)(48,114,58,104)(49,103,59,113)(50,112,60,102)(61,90,71,100)(62,99,72,89)(63,88,73,98)(64,97,74,87)(65,86,75,96)(66,95,76,85)(67,84,77,94)(68,93,78,83)(69,82,79,92)(70,91,80,81) );

G=PermutationGroup([(1,146),(2,147),(3,148),(4,149),(5,150),(6,151),(7,152),(8,153),(9,154),(10,155),(11,156),(12,157),(13,158),(14,159),(15,160),(16,141),(17,142),(18,143),(19,144),(20,145),(21,125),(22,126),(23,127),(24,128),(25,129),(26,130),(27,131),(28,132),(29,133),(30,134),(31,135),(32,136),(33,137),(34,138),(35,139),(36,140),(37,121),(38,122),(39,123),(40,124),(41,108),(42,109),(43,110),(44,111),(45,112),(46,113),(47,114),(48,115),(49,116),(50,117),(51,118),(52,119),(53,120),(54,101),(55,102),(56,103),(57,104),(58,105),(59,106),(60,107),(61,97),(62,98),(63,99),(64,100),(65,81),(66,82),(67,83),(68,84),(69,85),(70,86),(71,87),(72,88),(73,89),(74,90),(75,91),(76,92),(77,93),(78,94),(79,95),(80,96)], [(1,89,11,99),(2,100,12,90),(3,91,13,81),(4,82,14,92),(5,93,15,83),(6,84,16,94),(7,95,17,85),(8,86,18,96),(9,97,19,87),(10,88,20,98),(21,107,31,117),(22,118,32,108),(23,109,33,119),(24,120,34,110),(25,111,35,101),(26,102,36,112),(27,113,37,103),(28,104,38,114),(29,115,39,105),(30,106,40,116),(41,126,51,136),(42,137,52,127),(43,128,53,138),(44,139,54,129),(45,130,55,140),(46,121,56,131),(47,132,57,122),(48,123,58,133),(49,134,59,124),(50,125,60,135),(61,144,71,154),(62,155,72,145),(63,146,73,156),(64,157,74,147),(65,148,75,158),(66,159,76,149),(67,150,77,160),(68,141,78,151),(69,152,79,142),(70,143,80,153)], [(1,39),(2,30),(3,21),(4,32),(5,23),(6,34),(7,25),(8,36),(9,27),(10,38),(11,29),(12,40),(13,31),(14,22),(15,33),(16,24),(17,35),(18,26),(19,37),(20,28),(41,76),(42,67),(43,78),(44,69),(45,80),(46,71),(47,62),(48,73),(49,64),(50,75),(51,66),(52,77),(53,68),(54,79),(55,70),(56,61),(57,72),(58,63),(59,74),(60,65),(81,107),(82,118),(83,109),(84,120),(85,111),(86,102),(87,113),(88,104),(89,115),(90,106),(91,117),(92,108),(93,119),(94,110),(95,101),(96,112),(97,103),(98,114),(99,105),(100,116),(121,144),(122,155),(123,146),(124,157),(125,148),(126,159),(127,150),(128,141),(129,152),(130,143),(131,154),(132,145),(133,156),(134,147),(135,158),(136,149),(137,160),(138,151),(139,142),(140,153)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,155,11,145),(2,144,12,154),(3,153,13,143),(4,142,14,152),(5,151,15,141),(6,160,16,150),(7,149,17,159),(8,158,18,148),(9,147,19,157),(10,156,20,146),(21,140,31,130),(22,129,32,139),(23,138,33,128),(24,127,34,137),(25,136,35,126),(26,125,36,135),(27,134,37,124),(28,123,38,133),(29,132,39,122),(30,121,40,131),(41,111,51,101),(42,120,52,110),(43,109,53,119),(44,118,54,108),(45,107,55,117),(46,116,56,106),(47,105,57,115),(48,114,58,104),(49,103,59,113),(50,112,60,102),(61,90,71,100),(62,99,72,89),(63,88,73,98),(64,97,74,87),(65,86,75,96),(66,95,76,85),(67,84,77,94),(68,93,78,83),(69,82,79,92),(70,91,80,81)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
0040000
0004000
0000400
0000040
,
4000000
0400000
0000400
0000040
001000
000100
,
4000000
0400000
0025372226
0032163819
002226164
003819925
,
3470000
3410000
00029036
0014144040
00036012
0040402727
,
010000
100000
0020350
00253976
00350390
0076162

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,0,0,0,0,0,0,40,0,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,25,32,22,38,0,0,37,16,26,19,0,0,22,38,16,9,0,0,26,19,4,25],[34,34,0,0,0,0,7,1,0,0,0,0,0,0,0,14,0,40,0,0,29,14,36,40,0,0,0,40,0,27,0,0,36,40,12,27],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,25,35,7,0,0,0,39,0,6,0,0,35,7,39,16,0,0,0,6,0,2] >;

74 conjugacy classes

class 1 2A2B2C2D···2I2J2K2L2M4A···4H4I···4T5A5B10A···10F10G···10R20A···20H20I···20T
order12222···222224···44···45510···1010···1020···2020···20
size11112···2101010102···210···10222···24···42···24···4

74 irreducible representations

dim11111112222244
type++++++++++++--
imageC1C2C2C2C2C2C2D5D10D10D10D102- (1+4)D4.10D10
kernelC2×D4.10D10C22×Dic10C2×C4○D20C2×D42D5C2×Q8×D5D4.10D10C10×C4○D4C2×C4○D4C22×C4C2×D4C2×Q8C4○D4C10C2
# reps1336216126621628

In GAP, Magma, Sage, TeX

C_2\times D_4._{10}D_{10}
% in TeX

G:=Group("C2xD4.10D10");
// GroupNames label

G:=SmallGroup(320,1620);
// by ID

G=gap.SmallGroup(320,1620);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,297,136,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=1,d^10=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=b^2*c,c*e=e*c,e*d*e^-1=d^9>;
// generators/relations

׿
×
𝔽