direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×Dic5.14D4, C23⋊3Dic10, C24.51D10, (C22×C10)⋊4Q8, C10⋊1(C22⋊Q8), C10.5(C22×Q8), (C2×C10).25C24, C4⋊Dic5⋊49C22, C22⋊C4.84D10, Dic5.81(C2×D4), C22⋊2(C2×Dic10), C22.122(D4×D5), C10.32(C22×D4), (C2×C20).125C23, (C2×Dic5).245D4, (C22×Dic10)⋊5C2, (C22×C4).167D10, (C23×Dic5).8C2, C2.7(C22×Dic10), C22.67(C23×D5), (C2×Dic10)⋊47C22, C10.D4⋊46C22, (C23×C10).51C22, (C22×C20).70C22, C23.318(C22×D5), C23.D5.83C22, C22.64(D4⋊2D5), (C22×C10).117C23, (C2×Dic5).185C23, (C22×Dic5).225C22, C2.7(C2×D4×D5), C5⋊1(C2×C22⋊Q8), (C2×C10)⋊4(C2×Q8), (C2×C4⋊Dic5)⋊17C2, C10.66(C2×C4○D4), C2.7(C2×D4⋊2D5), (C2×C10).378(C2×D4), (C2×C22⋊C4).16D5, (C2×C10.D4)⋊21C2, (C10×C22⋊C4).17C2, (C2×C4).132(C22×D5), (C2×C23.D5).20C2, (C2×C10).166(C4○D4), (C5×C22⋊C4).96C22, SmallGroup(320,1153)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 974 in 322 conjugacy classes, 135 normal (31 characteristic)
C1, C2 [×3], C2 [×4], C2 [×4], C4 [×14], C22, C22 [×10], C22 [×12], C5, C2×C4 [×4], C2×C4 [×30], Q8 [×8], C23, C23 [×6], C23 [×4], C10 [×3], C10 [×4], C10 [×4], C22⋊C4 [×4], C22⋊C4 [×4], C4⋊C4 [×12], C22×C4 [×2], C22×C4 [×12], C2×Q8 [×8], C24, Dic5 [×4], Dic5 [×6], C20 [×4], C2×C10, C2×C10 [×10], C2×C10 [×12], C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4 [×3], C22⋊Q8 [×8], C23×C4, C22×Q8, Dic10 [×8], C2×Dic5 [×12], C2×Dic5 [×14], C2×C20 [×4], C2×C20 [×4], C22×C10, C22×C10 [×6], C22×C10 [×4], C2×C22⋊Q8, C10.D4 [×8], C4⋊Dic5 [×4], C23.D5 [×4], C5×C22⋊C4 [×4], C2×Dic10 [×4], C2×Dic10 [×4], C22×Dic5 [×4], C22×Dic5 [×4], C22×Dic5 [×4], C22×C20 [×2], C23×C10, Dic5.14D4 [×8], C2×C10.D4 [×2], C2×C4⋊Dic5, C2×C23.D5, C10×C22⋊C4, C22×Dic10, C23×Dic5, C2×Dic5.14D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], Q8 [×4], C23 [×15], D5, C2×D4 [×6], C2×Q8 [×6], C4○D4 [×2], C24, D10 [×7], C22⋊Q8 [×4], C22×D4, C22×Q8, C2×C4○D4, Dic10 [×4], C22×D5 [×7], C2×C22⋊Q8, C2×Dic10 [×6], D4×D5 [×2], D4⋊2D5 [×2], C23×D5, Dic5.14D4 [×4], C22×Dic10, C2×D4×D5, C2×D4⋊2D5, C2×Dic5.14D4
Generators and relations
G = < a,b,c,d,e | a2=b10=d4=e2=1, c2=b5, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, dcd-1=b5c, ce=ec, ede=b5d-1 >
(1 67)(2 68)(3 69)(4 70)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 116)(12 117)(13 118)(14 119)(15 120)(16 111)(17 112)(18 113)(19 114)(20 115)(21 58)(22 59)(23 60)(24 51)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 87)(32 88)(33 89)(34 90)(35 81)(36 82)(37 83)(38 84)(39 85)(40 86)(41 78)(42 79)(43 80)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)(91 143)(92 144)(93 145)(94 146)(95 147)(96 148)(97 149)(98 150)(99 141)(100 142)(101 139)(102 140)(103 131)(104 132)(105 133)(106 134)(107 135)(108 136)(109 137)(110 138)(121 159)(122 160)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 103 6 108)(2 102 7 107)(3 101 8 106)(4 110 9 105)(5 109 10 104)(11 74 16 79)(12 73 17 78)(13 72 18 77)(14 71 19 76)(15 80 20 75)(21 97 26 92)(22 96 27 91)(23 95 28 100)(24 94 29 99)(25 93 30 98)(31 126 36 121)(32 125 37 130)(33 124 38 129)(34 123 39 128)(35 122 40 127)(41 117 46 112)(42 116 47 111)(43 115 48 120)(44 114 49 119)(45 113 50 118)(51 146 56 141)(52 145 57 150)(53 144 58 149)(54 143 59 148)(55 142 60 147)(61 137 66 132)(62 136 67 131)(63 135 68 140)(64 134 69 139)(65 133 70 138)(81 160 86 155)(82 159 87 154)(83 158 88 153)(84 157 89 152)(85 156 90 151)
(1 39 22 47)(2 40 23 48)(3 31 24 49)(4 32 25 50)(5 33 26 41)(6 34 27 42)(7 35 28 43)(8 36 29 44)(9 37 30 45)(10 38 21 46)(11 131 151 148)(12 132 152 149)(13 133 153 150)(14 134 154 141)(15 135 155 142)(16 136 156 143)(17 137 157 144)(18 138 158 145)(19 139 159 146)(20 140 160 147)(51 76 69 87)(52 77 70 88)(53 78 61 89)(54 79 62 90)(55 80 63 81)(56 71 64 82)(57 72 65 83)(58 73 66 84)(59 74 67 85)(60 75 68 86)(91 111 108 128)(92 112 109 129)(93 113 110 130)(94 114 101 121)(95 115 102 122)(96 116 103 123)(97 117 104 124)(98 118 105 125)(99 119 106 126)(100 120 107 127)
(11 156)(12 157)(13 158)(14 159)(15 160)(16 151)(17 152)(18 153)(19 154)(20 155)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 41)(39 42)(40 43)(71 87)(72 88)(73 89)(74 90)(75 81)(76 82)(77 83)(78 84)(79 85)(80 86)(111 123)(112 124)(113 125)(114 126)(115 127)(116 128)(117 129)(118 130)(119 121)(120 122)
G:=sub<Sym(160)| (1,67)(2,68)(3,69)(4,70)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,116)(12,117)(13,118)(14,119)(15,120)(16,111)(17,112)(18,113)(19,114)(20,115)(21,58)(22,59)(23,60)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,87)(32,88)(33,89)(34,90)(35,81)(36,82)(37,83)(38,84)(39,85)(40,86)(41,78)(42,79)(43,80)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(99,141)(100,142)(101,139)(102,140)(103,131)(104,132)(105,133)(106,134)(107,135)(108,136)(109,137)(110,138)(121,159)(122,160)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,103,6,108)(2,102,7,107)(3,101,8,106)(4,110,9,105)(5,109,10,104)(11,74,16,79)(12,73,17,78)(13,72,18,77)(14,71,19,76)(15,80,20,75)(21,97,26,92)(22,96,27,91)(23,95,28,100)(24,94,29,99)(25,93,30,98)(31,126,36,121)(32,125,37,130)(33,124,38,129)(34,123,39,128)(35,122,40,127)(41,117,46,112)(42,116,47,111)(43,115,48,120)(44,114,49,119)(45,113,50,118)(51,146,56,141)(52,145,57,150)(53,144,58,149)(54,143,59,148)(55,142,60,147)(61,137,66,132)(62,136,67,131)(63,135,68,140)(64,134,69,139)(65,133,70,138)(81,160,86,155)(82,159,87,154)(83,158,88,153)(84,157,89,152)(85,156,90,151), (1,39,22,47)(2,40,23,48)(3,31,24,49)(4,32,25,50)(5,33,26,41)(6,34,27,42)(7,35,28,43)(8,36,29,44)(9,37,30,45)(10,38,21,46)(11,131,151,148)(12,132,152,149)(13,133,153,150)(14,134,154,141)(15,135,155,142)(16,136,156,143)(17,137,157,144)(18,138,158,145)(19,139,159,146)(20,140,160,147)(51,76,69,87)(52,77,70,88)(53,78,61,89)(54,79,62,90)(55,80,63,81)(56,71,64,82)(57,72,65,83)(58,73,66,84)(59,74,67,85)(60,75,68,86)(91,111,108,128)(92,112,109,129)(93,113,110,130)(94,114,101,121)(95,115,102,122)(96,116,103,123)(97,117,104,124)(98,118,105,125)(99,119,106,126)(100,120,107,127), (11,156)(12,157)(13,158)(14,159)(15,160)(16,151)(17,152)(18,153)(19,154)(20,155)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,41)(39,42)(40,43)(71,87)(72,88)(73,89)(74,90)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(111,123)(112,124)(113,125)(114,126)(115,127)(116,128)(117,129)(118,130)(119,121)(120,122)>;
G:=Group( (1,67)(2,68)(3,69)(4,70)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,116)(12,117)(13,118)(14,119)(15,120)(16,111)(17,112)(18,113)(19,114)(20,115)(21,58)(22,59)(23,60)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,87)(32,88)(33,89)(34,90)(35,81)(36,82)(37,83)(38,84)(39,85)(40,86)(41,78)(42,79)(43,80)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(99,141)(100,142)(101,139)(102,140)(103,131)(104,132)(105,133)(106,134)(107,135)(108,136)(109,137)(110,138)(121,159)(122,160)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,103,6,108)(2,102,7,107)(3,101,8,106)(4,110,9,105)(5,109,10,104)(11,74,16,79)(12,73,17,78)(13,72,18,77)(14,71,19,76)(15,80,20,75)(21,97,26,92)(22,96,27,91)(23,95,28,100)(24,94,29,99)(25,93,30,98)(31,126,36,121)(32,125,37,130)(33,124,38,129)(34,123,39,128)(35,122,40,127)(41,117,46,112)(42,116,47,111)(43,115,48,120)(44,114,49,119)(45,113,50,118)(51,146,56,141)(52,145,57,150)(53,144,58,149)(54,143,59,148)(55,142,60,147)(61,137,66,132)(62,136,67,131)(63,135,68,140)(64,134,69,139)(65,133,70,138)(81,160,86,155)(82,159,87,154)(83,158,88,153)(84,157,89,152)(85,156,90,151), (1,39,22,47)(2,40,23,48)(3,31,24,49)(4,32,25,50)(5,33,26,41)(6,34,27,42)(7,35,28,43)(8,36,29,44)(9,37,30,45)(10,38,21,46)(11,131,151,148)(12,132,152,149)(13,133,153,150)(14,134,154,141)(15,135,155,142)(16,136,156,143)(17,137,157,144)(18,138,158,145)(19,139,159,146)(20,140,160,147)(51,76,69,87)(52,77,70,88)(53,78,61,89)(54,79,62,90)(55,80,63,81)(56,71,64,82)(57,72,65,83)(58,73,66,84)(59,74,67,85)(60,75,68,86)(91,111,108,128)(92,112,109,129)(93,113,110,130)(94,114,101,121)(95,115,102,122)(96,116,103,123)(97,117,104,124)(98,118,105,125)(99,119,106,126)(100,120,107,127), (11,156)(12,157)(13,158)(14,159)(15,160)(16,151)(17,152)(18,153)(19,154)(20,155)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,41)(39,42)(40,43)(71,87)(72,88)(73,89)(74,90)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(111,123)(112,124)(113,125)(114,126)(115,127)(116,128)(117,129)(118,130)(119,121)(120,122) );
G=PermutationGroup([(1,67),(2,68),(3,69),(4,70),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,116),(12,117),(13,118),(14,119),(15,120),(16,111),(17,112),(18,113),(19,114),(20,115),(21,58),(22,59),(23,60),(24,51),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,87),(32,88),(33,89),(34,90),(35,81),(36,82),(37,83),(38,84),(39,85),(40,86),(41,78),(42,79),(43,80),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77),(91,143),(92,144),(93,145),(94,146),(95,147),(96,148),(97,149),(98,150),(99,141),(100,142),(101,139),(102,140),(103,131),(104,132),(105,133),(106,134),(107,135),(108,136),(109,137),(110,138),(121,159),(122,160),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,103,6,108),(2,102,7,107),(3,101,8,106),(4,110,9,105),(5,109,10,104),(11,74,16,79),(12,73,17,78),(13,72,18,77),(14,71,19,76),(15,80,20,75),(21,97,26,92),(22,96,27,91),(23,95,28,100),(24,94,29,99),(25,93,30,98),(31,126,36,121),(32,125,37,130),(33,124,38,129),(34,123,39,128),(35,122,40,127),(41,117,46,112),(42,116,47,111),(43,115,48,120),(44,114,49,119),(45,113,50,118),(51,146,56,141),(52,145,57,150),(53,144,58,149),(54,143,59,148),(55,142,60,147),(61,137,66,132),(62,136,67,131),(63,135,68,140),(64,134,69,139),(65,133,70,138),(81,160,86,155),(82,159,87,154),(83,158,88,153),(84,157,89,152),(85,156,90,151)], [(1,39,22,47),(2,40,23,48),(3,31,24,49),(4,32,25,50),(5,33,26,41),(6,34,27,42),(7,35,28,43),(8,36,29,44),(9,37,30,45),(10,38,21,46),(11,131,151,148),(12,132,152,149),(13,133,153,150),(14,134,154,141),(15,135,155,142),(16,136,156,143),(17,137,157,144),(18,138,158,145),(19,139,159,146),(20,140,160,147),(51,76,69,87),(52,77,70,88),(53,78,61,89),(54,79,62,90),(55,80,63,81),(56,71,64,82),(57,72,65,83),(58,73,66,84),(59,74,67,85),(60,75,68,86),(91,111,108,128),(92,112,109,129),(93,113,110,130),(94,114,101,121),(95,115,102,122),(96,116,103,123),(97,117,104,124),(98,118,105,125),(99,119,106,126),(100,120,107,127)], [(11,156),(12,157),(13,158),(14,159),(15,160),(16,151),(17,152),(18,153),(19,154),(20,155),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,41),(39,42),(40,43),(71,87),(72,88),(73,89),(74,90),(75,81),(76,82),(77,83),(78,84),(79,85),(80,86),(111,123),(112,124),(113,125),(114,126),(115,127),(116,128),(117,129),(118,130),(119,121),(120,122)])
Matrix representation ►G ⊆ GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
34 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 5 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
2 | 35 | 0 | 0 | 0 | 0 |
21 | 39 | 0 | 0 | 0 | 0 |
0 | 0 | 20 | 3 | 0 | 0 |
0 | 0 | 3 | 21 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 39 | 9 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 40 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[34,1,0,0,0,0,40,0,0,0,0,0,0,0,1,5,0,0,0,0,1,6,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[2,21,0,0,0,0,35,39,0,0,0,0,0,0,20,3,0,0,0,0,3,21,0,0,0,0,0,0,32,0,0,0,0,0,0,9],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,39,4,0,0,0,0,9,2,0,0,0,0,0,0,0,40,0,0,0,0,40,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40] >;
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 4M | 4N | 4O | 4P | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10V | 20A | ··· | 20P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | + | + | - | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | Q8 | D5 | C4○D4 | D10 | D10 | D10 | Dic10 | D4×D5 | D4⋊2D5 |
kernel | C2×Dic5.14D4 | Dic5.14D4 | C2×C10.D4 | C2×C4⋊Dic5 | C2×C23.D5 | C10×C22⋊C4 | C22×Dic10 | C23×Dic5 | C2×Dic5 | C22×C10 | C2×C22⋊C4 | C2×C10 | C22⋊C4 | C22×C4 | C24 | C23 | C22 | C22 |
# reps | 1 | 8 | 2 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 4 | 8 | 4 | 2 | 16 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_2\times Dic_5._{14}D_4
% in TeX
G:=Group("C2xDic5.14D4");
// GroupNames label
G:=SmallGroup(320,1153);
// by ID
G=gap.SmallGroup(320,1153);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,675,297,80,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^10=d^4=e^2=1,c^2=b^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^5*c,c*e=e*c,e*d*e=b^5*d^-1>;
// generators/relations