Copied to
clipboard

?

G = C5×Q32⋊C2order 320 = 26·5

Direct product of C5 and Q32⋊C2

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C5×Q32⋊C2, Q322C10, C20.66D8, C40.54D4, SD322C10, M5(2)⋊2C10, C40.77C23, C80.12C22, C16.(C2×C10), C8.4(C5×D4), (C5×Q32)⋊6C2, C4.15(C5×D8), (C5×SD32)⋊6C2, C4○D8.4C10, D8.3(C2×C10), C2.17(C10×D8), C10.89(C2×D8), (C2×C10).28D8, C4.12(D4×C10), C22.6(C5×D8), (C10×Q16)⋊24C2, (C2×Q16)⋊10C10, (C2×C20).347D4, C20.319(C2×D4), (C5×M5(2))⋊4C2, C8.8(C22×C10), Q16.3(C2×C10), (C5×D8).13C22, (C2×C40).279C22, (C5×Q16).15C22, (C5×C4○D8).9C2, (C2×C4).48(C5×D4), (C2×C8).31(C2×C10), SmallGroup(320,1011)

Series: Derived Chief Lower central Upper central

C1C8 — C5×Q32⋊C2
C1C2C4C8C40C5×D8C5×SD32 — C5×Q32⋊C2
C1C2C4C8 — C5×Q32⋊C2
C1C10C2×C20C2×C40 — C5×Q32⋊C2

Subgroups: 162 in 82 conjugacy classes, 46 normal (30 characteristic)
C1, C2, C2 [×2], C4 [×2], C4 [×3], C22, C22, C5, C8 [×2], C2×C4, C2×C4 [×2], D4 [×2], Q8 [×4], C10, C10 [×2], C16 [×2], C2×C8, D8, SD16, Q16, Q16 [×2], Q16, C2×Q8, C4○D4, C20 [×2], C20 [×3], C2×C10, C2×C10, M5(2), SD32 [×2], Q32 [×2], C2×Q16, C4○D8, C40 [×2], C2×C20, C2×C20 [×2], C5×D4 [×2], C5×Q8 [×4], Q32⋊C2, C80 [×2], C2×C40, C5×D8, C5×SD16, C5×Q16, C5×Q16 [×2], C5×Q16, Q8×C10, C5×C4○D4, C5×M5(2), C5×SD32 [×2], C5×Q32 [×2], C10×Q16, C5×C4○D8, C5×Q32⋊C2

Quotients:
C1, C2 [×7], C22 [×7], C5, D4 [×2], C23, C10 [×7], D8 [×2], C2×D4, C2×C10 [×7], C2×D8, C5×D4 [×2], C22×C10, Q32⋊C2, C5×D8 [×2], D4×C10, C10×D8, C5×Q32⋊C2

Generators and relations
 G = < a,b,c,d | a5=b16=d2=1, c2=b8, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd=b9, cd=dc >

Smallest permutation representation
On 160 points
Generators in S160
(1 65 118 38 145)(2 66 119 39 146)(3 67 120 40 147)(4 68 121 41 148)(5 69 122 42 149)(6 70 123 43 150)(7 71 124 44 151)(8 72 125 45 152)(9 73 126 46 153)(10 74 127 47 154)(11 75 128 48 155)(12 76 113 33 156)(13 77 114 34 157)(14 78 115 35 158)(15 79 116 36 159)(16 80 117 37 160)(17 81 49 100 129)(18 82 50 101 130)(19 83 51 102 131)(20 84 52 103 132)(21 85 53 104 133)(22 86 54 105 134)(23 87 55 106 135)(24 88 56 107 136)(25 89 57 108 137)(26 90 58 109 138)(27 91 59 110 139)(28 92 60 111 140)(29 93 61 112 141)(30 94 62 97 142)(31 95 63 98 143)(32 96 64 99 144)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 111 9 103)(2 110 10 102)(3 109 11 101)(4 108 12 100)(5 107 13 99)(6 106 14 98)(7 105 15 97)(8 104 16 112)(17 121 25 113)(18 120 26 128)(19 119 27 127)(20 118 28 126)(21 117 29 125)(22 116 30 124)(23 115 31 123)(24 114 32 122)(33 81 41 89)(34 96 42 88)(35 95 43 87)(36 94 44 86)(37 93 45 85)(38 92 46 84)(39 91 47 83)(40 90 48 82)(49 148 57 156)(50 147 58 155)(51 146 59 154)(52 145 60 153)(53 160 61 152)(54 159 62 151)(55 158 63 150)(56 157 64 149)(65 140 73 132)(66 139 74 131)(67 138 75 130)(68 137 76 129)(69 136 77 144)(70 135 78 143)(71 134 79 142)(72 133 80 141)
(1 102)(2 111)(3 104)(4 97)(5 106)(6 99)(7 108)(8 101)(9 110)(10 103)(11 112)(12 105)(13 98)(14 107)(15 100)(16 109)(17 116)(18 125)(19 118)(20 127)(21 120)(22 113)(23 122)(24 115)(25 124)(26 117)(27 126)(28 119)(29 128)(30 121)(31 114)(32 123)(33 86)(34 95)(35 88)(36 81)(37 90)(38 83)(39 92)(40 85)(41 94)(42 87)(43 96)(44 89)(45 82)(46 91)(47 84)(48 93)(49 159)(50 152)(51 145)(52 154)(53 147)(54 156)(55 149)(56 158)(57 151)(58 160)(59 153)(60 146)(61 155)(62 148)(63 157)(64 150)(65 131)(66 140)(67 133)(68 142)(69 135)(70 144)(71 137)(72 130)(73 139)(74 132)(75 141)(76 134)(77 143)(78 136)(79 129)(80 138)

G:=sub<Sym(160)| (1,65,118,38,145)(2,66,119,39,146)(3,67,120,40,147)(4,68,121,41,148)(5,69,122,42,149)(6,70,123,43,150)(7,71,124,44,151)(8,72,125,45,152)(9,73,126,46,153)(10,74,127,47,154)(11,75,128,48,155)(12,76,113,33,156)(13,77,114,34,157)(14,78,115,35,158)(15,79,116,36,159)(16,80,117,37,160)(17,81,49,100,129)(18,82,50,101,130)(19,83,51,102,131)(20,84,52,103,132)(21,85,53,104,133)(22,86,54,105,134)(23,87,55,106,135)(24,88,56,107,136)(25,89,57,108,137)(26,90,58,109,138)(27,91,59,110,139)(28,92,60,111,140)(29,93,61,112,141)(30,94,62,97,142)(31,95,63,98,143)(32,96,64,99,144), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,111,9,103)(2,110,10,102)(3,109,11,101)(4,108,12,100)(5,107,13,99)(6,106,14,98)(7,105,15,97)(8,104,16,112)(17,121,25,113)(18,120,26,128)(19,119,27,127)(20,118,28,126)(21,117,29,125)(22,116,30,124)(23,115,31,123)(24,114,32,122)(33,81,41,89)(34,96,42,88)(35,95,43,87)(36,94,44,86)(37,93,45,85)(38,92,46,84)(39,91,47,83)(40,90,48,82)(49,148,57,156)(50,147,58,155)(51,146,59,154)(52,145,60,153)(53,160,61,152)(54,159,62,151)(55,158,63,150)(56,157,64,149)(65,140,73,132)(66,139,74,131)(67,138,75,130)(68,137,76,129)(69,136,77,144)(70,135,78,143)(71,134,79,142)(72,133,80,141), (1,102)(2,111)(3,104)(4,97)(5,106)(6,99)(7,108)(8,101)(9,110)(10,103)(11,112)(12,105)(13,98)(14,107)(15,100)(16,109)(17,116)(18,125)(19,118)(20,127)(21,120)(22,113)(23,122)(24,115)(25,124)(26,117)(27,126)(28,119)(29,128)(30,121)(31,114)(32,123)(33,86)(34,95)(35,88)(36,81)(37,90)(38,83)(39,92)(40,85)(41,94)(42,87)(43,96)(44,89)(45,82)(46,91)(47,84)(48,93)(49,159)(50,152)(51,145)(52,154)(53,147)(54,156)(55,149)(56,158)(57,151)(58,160)(59,153)(60,146)(61,155)(62,148)(63,157)(64,150)(65,131)(66,140)(67,133)(68,142)(69,135)(70,144)(71,137)(72,130)(73,139)(74,132)(75,141)(76,134)(77,143)(78,136)(79,129)(80,138)>;

G:=Group( (1,65,118,38,145)(2,66,119,39,146)(3,67,120,40,147)(4,68,121,41,148)(5,69,122,42,149)(6,70,123,43,150)(7,71,124,44,151)(8,72,125,45,152)(9,73,126,46,153)(10,74,127,47,154)(11,75,128,48,155)(12,76,113,33,156)(13,77,114,34,157)(14,78,115,35,158)(15,79,116,36,159)(16,80,117,37,160)(17,81,49,100,129)(18,82,50,101,130)(19,83,51,102,131)(20,84,52,103,132)(21,85,53,104,133)(22,86,54,105,134)(23,87,55,106,135)(24,88,56,107,136)(25,89,57,108,137)(26,90,58,109,138)(27,91,59,110,139)(28,92,60,111,140)(29,93,61,112,141)(30,94,62,97,142)(31,95,63,98,143)(32,96,64,99,144), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,111,9,103)(2,110,10,102)(3,109,11,101)(4,108,12,100)(5,107,13,99)(6,106,14,98)(7,105,15,97)(8,104,16,112)(17,121,25,113)(18,120,26,128)(19,119,27,127)(20,118,28,126)(21,117,29,125)(22,116,30,124)(23,115,31,123)(24,114,32,122)(33,81,41,89)(34,96,42,88)(35,95,43,87)(36,94,44,86)(37,93,45,85)(38,92,46,84)(39,91,47,83)(40,90,48,82)(49,148,57,156)(50,147,58,155)(51,146,59,154)(52,145,60,153)(53,160,61,152)(54,159,62,151)(55,158,63,150)(56,157,64,149)(65,140,73,132)(66,139,74,131)(67,138,75,130)(68,137,76,129)(69,136,77,144)(70,135,78,143)(71,134,79,142)(72,133,80,141), (1,102)(2,111)(3,104)(4,97)(5,106)(6,99)(7,108)(8,101)(9,110)(10,103)(11,112)(12,105)(13,98)(14,107)(15,100)(16,109)(17,116)(18,125)(19,118)(20,127)(21,120)(22,113)(23,122)(24,115)(25,124)(26,117)(27,126)(28,119)(29,128)(30,121)(31,114)(32,123)(33,86)(34,95)(35,88)(36,81)(37,90)(38,83)(39,92)(40,85)(41,94)(42,87)(43,96)(44,89)(45,82)(46,91)(47,84)(48,93)(49,159)(50,152)(51,145)(52,154)(53,147)(54,156)(55,149)(56,158)(57,151)(58,160)(59,153)(60,146)(61,155)(62,148)(63,157)(64,150)(65,131)(66,140)(67,133)(68,142)(69,135)(70,144)(71,137)(72,130)(73,139)(74,132)(75,141)(76,134)(77,143)(78,136)(79,129)(80,138) );

G=PermutationGroup([(1,65,118,38,145),(2,66,119,39,146),(3,67,120,40,147),(4,68,121,41,148),(5,69,122,42,149),(6,70,123,43,150),(7,71,124,44,151),(8,72,125,45,152),(9,73,126,46,153),(10,74,127,47,154),(11,75,128,48,155),(12,76,113,33,156),(13,77,114,34,157),(14,78,115,35,158),(15,79,116,36,159),(16,80,117,37,160),(17,81,49,100,129),(18,82,50,101,130),(19,83,51,102,131),(20,84,52,103,132),(21,85,53,104,133),(22,86,54,105,134),(23,87,55,106,135),(24,88,56,107,136),(25,89,57,108,137),(26,90,58,109,138),(27,91,59,110,139),(28,92,60,111,140),(29,93,61,112,141),(30,94,62,97,142),(31,95,63,98,143),(32,96,64,99,144)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,111,9,103),(2,110,10,102),(3,109,11,101),(4,108,12,100),(5,107,13,99),(6,106,14,98),(7,105,15,97),(8,104,16,112),(17,121,25,113),(18,120,26,128),(19,119,27,127),(20,118,28,126),(21,117,29,125),(22,116,30,124),(23,115,31,123),(24,114,32,122),(33,81,41,89),(34,96,42,88),(35,95,43,87),(36,94,44,86),(37,93,45,85),(38,92,46,84),(39,91,47,83),(40,90,48,82),(49,148,57,156),(50,147,58,155),(51,146,59,154),(52,145,60,153),(53,160,61,152),(54,159,62,151),(55,158,63,150),(56,157,64,149),(65,140,73,132),(66,139,74,131),(67,138,75,130),(68,137,76,129),(69,136,77,144),(70,135,78,143),(71,134,79,142),(72,133,80,141)], [(1,102),(2,111),(3,104),(4,97),(5,106),(6,99),(7,108),(8,101),(9,110),(10,103),(11,112),(12,105),(13,98),(14,107),(15,100),(16,109),(17,116),(18,125),(19,118),(20,127),(21,120),(22,113),(23,122),(24,115),(25,124),(26,117),(27,126),(28,119),(29,128),(30,121),(31,114),(32,123),(33,86),(34,95),(35,88),(36,81),(37,90),(38,83),(39,92),(40,85),(41,94),(42,87),(43,96),(44,89),(45,82),(46,91),(47,84),(48,93),(49,159),(50,152),(51,145),(52,154),(53,147),(54,156),(55,149),(56,158),(57,151),(58,160),(59,153),(60,146),(61,155),(62,148),(63,157),(64,150),(65,131),(66,140),(67,133),(68,142),(69,135),(70,144),(71,137),(72,130),(73,139),(74,132),(75,141),(76,134),(77,143),(78,136),(79,129),(80,138)])

Matrix representation G ⊆ GL6(𝔽241)

20500000
02050000
001000
000100
000010
000001
,
11110000
230110000
005523996106
0011435202184
0058224233119
002124234159
,
2302300000
230110000
00104804084
00148199117164
00462297885
006727238101
,
24000000
02400000
0080010
00231381239
0010801610
001512161103

G:=sub<GL(6,GF(241))| [205,0,0,0,0,0,0,205,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,230,0,0,0,0,11,11,0,0,0,0,0,0,55,114,58,212,0,0,239,35,224,42,0,0,96,202,233,34,0,0,106,184,119,159],[230,230,0,0,0,0,230,11,0,0,0,0,0,0,104,148,46,67,0,0,80,199,229,27,0,0,40,117,78,238,0,0,84,164,85,101],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,80,23,108,151,0,0,0,138,0,2,0,0,1,1,161,161,0,0,0,239,0,103] >;

80 conjugacy classes

class 1 2A2B2C4A4B4C4D4E5A5B5C5D8A8B8C10A10B10C10D10E10F10G10H10I10J10K10L16A16B16C16D20A···20H20I···20T40A···40H40I40J40K40L80A···80P
order12224444455558881010101010101010101010101616161620···2020···2040···404040404080···80
size112822888111122411112222888844442···28···82···244444···4

80 irreducible representations

dim1111111111112222222244
type++++++++++-
imageC1C2C2C2C2C2C5C10C10C10C10C10D4D4D8D8C5×D4C5×D4C5×D8C5×D8Q32⋊C2C5×Q32⋊C2
kernelC5×Q32⋊C2C5×M5(2)C5×SD32C5×Q32C10×Q16C5×C4○D8Q32⋊C2M5(2)SD32Q32C2×Q16C4○D8C40C2×C20C20C2×C10C8C2×C4C4C22C5C1
# reps1122114488441122448828

In GAP, Magma, Sage, TeX

C_5\times Q_{32}\rtimes C_2
% in TeX

G:=Group("C5xQ32:C2");
// GroupNames label

G:=SmallGroup(320,1011);
// by ID

G=gap.SmallGroup(320,1011);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,589,1128,3446,4204,2111,242,10085,5052,124]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^16=d^2=1,c^2=b^8,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=b^9,c*d=d*c>;
// generators/relations

׿
×
𝔽