Copied to
clipboard

G = C8.Dic10order 320 = 26·5

1st non-split extension by C8 of Dic10 acting via Dic10/C10=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C40.5Q8, C20.2SD16, C8.1Dic10, C52C161C4, C53(C8.Q8), C8.28(C4×D5), C40.73(C2×C4), (C2×C20).87D4, C4.Q8.1D5, (C2×C8).40D10, C4.6(Q8⋊D5), C20.32(C4⋊C4), C10.7(C4.Q8), C20.4C8.2C2, C40.6C4.4C2, (C2×C40).46C22, (C2×C10).29SD16, C4.1(C10.D4), C22.5(D4.D5), C2.3(C20.Q8), (C5×C4.Q8).1C2, (C2×C4).15(C5⋊D4), SmallGroup(320,45)

Series: Derived Chief Lower central Upper central

C1C40 — C8.Dic10
C1C5C10C20C2×C20C2×C40C20.4C8 — C8.Dic10
C5C10C20C40 — C8.Dic10
C1C2C2×C4C2×C8C4.Q8

Generators and relations for C8.Dic10
 G = < a,b,c | a8=b20=1, c2=ab10, bab-1=a3, cac-1=a5, cbc-1=a-1b-1 >

2C2
8C4
2C10
4C2×C4
20C8
8C20
2C4⋊C4
5C16
5C16
10M4(2)
4C2×C20
4C52C8
5C8.C4
5M5(2)
2C5×C4⋊C4
2C4.Dic5
5C8.Q8

Smallest permutation representation of C8.Dic10
On 80 points
Generators in S80
(1 29 16 24 9 39 11 34)(2 25 12 30 10 35 17 40)(3 21 18 26 6 31 13 36)(4 27 14 22 7 37 19 32)(5 23 20 28 8 33 15 38)(41 56 77 62 51 46 67 72)(42 63 68 57 52 73 78 47)(43 58 79 64 53 48 69 74)(44 65 70 59 54 75 80 49)(45 60 61 66 55 50 71 76)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 71 29 66 16 45 24 50 9 61 39 76 11 55 34 60)(2 75 25 70 12 49 30 54 10 65 35 80 17 59 40 44)(3 79 21 74 18 53 26 58 6 69 31 64 13 43 36 48)(4 63 27 78 14 57 22 42 7 73 37 68 19 47 32 52)(5 67 23 62 20 41 28 46 8 77 33 72 15 51 38 56)

G:=sub<Sym(80)| (1,29,16,24,9,39,11,34)(2,25,12,30,10,35,17,40)(3,21,18,26,6,31,13,36)(4,27,14,22,7,37,19,32)(5,23,20,28,8,33,15,38)(41,56,77,62,51,46,67,72)(42,63,68,57,52,73,78,47)(43,58,79,64,53,48,69,74)(44,65,70,59,54,75,80,49)(45,60,61,66,55,50,71,76), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,71,29,66,16,45,24,50,9,61,39,76,11,55,34,60)(2,75,25,70,12,49,30,54,10,65,35,80,17,59,40,44)(3,79,21,74,18,53,26,58,6,69,31,64,13,43,36,48)(4,63,27,78,14,57,22,42,7,73,37,68,19,47,32,52)(5,67,23,62,20,41,28,46,8,77,33,72,15,51,38,56)>;

G:=Group( (1,29,16,24,9,39,11,34)(2,25,12,30,10,35,17,40)(3,21,18,26,6,31,13,36)(4,27,14,22,7,37,19,32)(5,23,20,28,8,33,15,38)(41,56,77,62,51,46,67,72)(42,63,68,57,52,73,78,47)(43,58,79,64,53,48,69,74)(44,65,70,59,54,75,80,49)(45,60,61,66,55,50,71,76), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,71,29,66,16,45,24,50,9,61,39,76,11,55,34,60)(2,75,25,70,12,49,30,54,10,65,35,80,17,59,40,44)(3,79,21,74,18,53,26,58,6,69,31,64,13,43,36,48)(4,63,27,78,14,57,22,42,7,73,37,68,19,47,32,52)(5,67,23,62,20,41,28,46,8,77,33,72,15,51,38,56) );

G=PermutationGroup([[(1,29,16,24,9,39,11,34),(2,25,12,30,10,35,17,40),(3,21,18,26,6,31,13,36),(4,27,14,22,7,37,19,32),(5,23,20,28,8,33,15,38),(41,56,77,62,51,46,67,72),(42,63,68,57,52,73,78,47),(43,58,79,64,53,48,69,74),(44,65,70,59,54,75,80,49),(45,60,61,66,55,50,71,76)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,71,29,66,16,45,24,50,9,61,39,76,11,55,34,60),(2,75,25,70,12,49,30,54,10,65,35,80,17,59,40,44),(3,79,21,74,18,53,26,58,6,69,31,64,13,43,36,48),(4,63,27,78,14,57,22,42,7,73,37,68,19,47,32,52),(5,67,23,62,20,41,28,46,8,77,33,72,15,51,38,56)]])

44 conjugacy classes

class 1 2A2B4A4B4C4D5A5B8A8B8C8D8E10A···10F16A16B16C16D20A20B20C20D20E···20L40A···40H
order1224444558888810···10161616162020202020···2040···40
size11222882222440402···22020202044448···84···4

44 irreducible representations

dim111112222222224444
type++++-+++-+-
imageC1C2C2C2C4Q8D4D5SD16SD16D10Dic10C4×D5C5⋊D4C8.Q8Q8⋊D5D4.D5C8.Dic10
kernelC8.Dic10C20.4C8C40.6C4C5×C4.Q8C52C16C40C2×C20C4.Q8C20C2×C10C2×C8C8C8C2×C4C5C4C22C1
# reps111141122224442228

Matrix representation of C8.Dic10 in GL4(𝔽241) generated by

021800
2203800
6322122219
23222222222
,
91000
16415000
17420717566
1741096666
,
10900
16362401
832222400
19316941205
G:=sub<GL(4,GF(241))| [0,220,63,232,218,38,221,22,0,0,222,222,0,0,19,222],[91,164,174,174,0,150,207,109,0,0,175,66,0,0,66,66],[1,16,83,193,0,36,222,169,90,240,240,41,0,1,0,205] >;

C8.Dic10 in GAP, Magma, Sage, TeX

C_8.{\rm Dic}_{10}
% in TeX

G:=Group("C8.Dic10");
// GroupNames label

G:=SmallGroup(320,45);
// by ID

G=gap.SmallGroup(320,45);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,365,36,758,346,80,851,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^8=b^20=1,c^2=a*b^10,b*a*b^-1=a^3,c*a*c^-1=a^5,c*b*c^-1=a^-1*b^-1>;
// generators/relations

Export

Subgroup lattice of C8.Dic10 in TeX

׿
×
𝔽