Copied to
clipboard

G = D4×C40order 320 = 26·5

Direct product of C40 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C40, C41(C2×C40), (C4×C40)⋊9C2, (C4×C8)⋊4C10, C4⋊C818C10, C2012(C2×C8), C2.3(D4×C20), C4⋊C4.11C20, C221(C2×C40), (C22×C40)⋊9C2, (C22×C8)⋊5C10, C4.79(D4×C10), C22⋊C815C10, (D4×C20).29C2, (C2×D4).11C20, (D4×C10).36C4, (C4×D4).14C10, C10.141(C4×D4), C20.484(C2×D4), C22⋊C4.7C20, C2.4(C22×C40), C10.72(C8○D4), C42.68(C2×C10), C23.18(C2×C20), C10.57(C22×C8), C20.353(C4○D4), (C2×C40).361C22, (C2×C20).990C23, (C4×C20).353C22, C22.22(C22×C20), (C22×C20).499C22, (C5×C4⋊C8)⋊37C2, C2.2(C5×C8○D4), (C2×C10)⋊10(C2×C8), (C5×C4⋊C4).36C4, C4.51(C5×C4○D4), (C5×C22⋊C8)⋊32C2, (C2×C4).36(C2×C20), (C2×C20).385(C2×C4), (C2×C8).107(C2×C10), (C5×C22⋊C4).22C4, (C22×C4).95(C2×C10), (C2×C10).341(C22×C4), (C2×C4).158(C22×C10), (C22×C10).153(C2×C4), SmallGroup(320,935)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C40
C1C2C4C2×C4C2×C20C2×C40C5×C22⋊C8 — D4×C40
C1C2 — D4×C40
C1C2×C40 — D4×C40

Generators and relations for D4×C40
 G = < a,b,c | a40=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 178 in 134 conjugacy classes, 90 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C8, C2×C4, C2×C4, C2×C4, D4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, C22×C4, C2×D4, C20, C20, C20, C2×C10, C2×C10, C2×C10, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C40, C40, C2×C20, C2×C20, C2×C20, C5×D4, C22×C10, C8×D4, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×C40, C2×C40, C2×C40, C22×C20, D4×C10, C4×C40, C5×C22⋊C8, C5×C4⋊C8, D4×C20, C22×C40, D4×C40
Quotients: C1, C2, C4, C22, C5, C8, C2×C4, D4, C23, C10, C2×C8, C22×C4, C2×D4, C4○D4, C20, C2×C10, C4×D4, C22×C8, C8○D4, C40, C2×C20, C5×D4, C22×C10, C8×D4, C2×C40, C22×C20, D4×C10, C5×C4○D4, D4×C20, C22×C40, C5×C8○D4, D4×C40

Smallest permutation representation of D4×C40
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 59 135 117)(2 60 136 118)(3 61 137 119)(4 62 138 120)(5 63 139 81)(6 64 140 82)(7 65 141 83)(8 66 142 84)(9 67 143 85)(10 68 144 86)(11 69 145 87)(12 70 146 88)(13 71 147 89)(14 72 148 90)(15 73 149 91)(16 74 150 92)(17 75 151 93)(18 76 152 94)(19 77 153 95)(20 78 154 96)(21 79 155 97)(22 80 156 98)(23 41 157 99)(24 42 158 100)(25 43 159 101)(26 44 160 102)(27 45 121 103)(28 46 122 104)(29 47 123 105)(30 48 124 106)(31 49 125 107)(32 50 126 108)(33 51 127 109)(34 52 128 110)(35 53 129 111)(36 54 130 112)(37 55 131 113)(38 56 132 114)(39 57 133 115)(40 58 134 116)
(1 117)(2 118)(3 119)(4 120)(5 81)(6 82)(7 83)(8 84)(9 85)(10 86)(11 87)(12 88)(13 89)(14 90)(15 91)(16 92)(17 93)(18 94)(19 95)(20 96)(21 97)(22 98)(23 99)(24 100)(25 101)(26 102)(27 103)(28 104)(29 105)(30 106)(31 107)(32 108)(33 109)(34 110)(35 111)(36 112)(37 113)(38 114)(39 115)(40 116)(41 157)(42 158)(43 159)(44 160)(45 121)(46 122)(47 123)(48 124)(49 125)(50 126)(51 127)(52 128)(53 129)(54 130)(55 131)(56 132)(57 133)(58 134)(59 135)(60 136)(61 137)(62 138)(63 139)(64 140)(65 141)(66 142)(67 143)(68 144)(69 145)(70 146)(71 147)(72 148)(73 149)(74 150)(75 151)(76 152)(77 153)(78 154)(79 155)(80 156)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,59,135,117)(2,60,136,118)(3,61,137,119)(4,62,138,120)(5,63,139,81)(6,64,140,82)(7,65,141,83)(8,66,142,84)(9,67,143,85)(10,68,144,86)(11,69,145,87)(12,70,146,88)(13,71,147,89)(14,72,148,90)(15,73,149,91)(16,74,150,92)(17,75,151,93)(18,76,152,94)(19,77,153,95)(20,78,154,96)(21,79,155,97)(22,80,156,98)(23,41,157,99)(24,42,158,100)(25,43,159,101)(26,44,160,102)(27,45,121,103)(28,46,122,104)(29,47,123,105)(30,48,124,106)(31,49,125,107)(32,50,126,108)(33,51,127,109)(34,52,128,110)(35,53,129,111)(36,54,130,112)(37,55,131,113)(38,56,132,114)(39,57,133,115)(40,58,134,116), (1,117)(2,118)(3,119)(4,120)(5,81)(6,82)(7,83)(8,84)(9,85)(10,86)(11,87)(12,88)(13,89)(14,90)(15,91)(16,92)(17,93)(18,94)(19,95)(20,96)(21,97)(22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,106)(31,107)(32,108)(33,109)(34,110)(35,111)(36,112)(37,113)(38,114)(39,115)(40,116)(41,157)(42,158)(43,159)(44,160)(45,121)(46,122)(47,123)(48,124)(49,125)(50,126)(51,127)(52,128)(53,129)(54,130)(55,131)(56,132)(57,133)(58,134)(59,135)(60,136)(61,137)(62,138)(63,139)(64,140)(65,141)(66,142)(67,143)(68,144)(69,145)(70,146)(71,147)(72,148)(73,149)(74,150)(75,151)(76,152)(77,153)(78,154)(79,155)(80,156)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,59,135,117)(2,60,136,118)(3,61,137,119)(4,62,138,120)(5,63,139,81)(6,64,140,82)(7,65,141,83)(8,66,142,84)(9,67,143,85)(10,68,144,86)(11,69,145,87)(12,70,146,88)(13,71,147,89)(14,72,148,90)(15,73,149,91)(16,74,150,92)(17,75,151,93)(18,76,152,94)(19,77,153,95)(20,78,154,96)(21,79,155,97)(22,80,156,98)(23,41,157,99)(24,42,158,100)(25,43,159,101)(26,44,160,102)(27,45,121,103)(28,46,122,104)(29,47,123,105)(30,48,124,106)(31,49,125,107)(32,50,126,108)(33,51,127,109)(34,52,128,110)(35,53,129,111)(36,54,130,112)(37,55,131,113)(38,56,132,114)(39,57,133,115)(40,58,134,116), (1,117)(2,118)(3,119)(4,120)(5,81)(6,82)(7,83)(8,84)(9,85)(10,86)(11,87)(12,88)(13,89)(14,90)(15,91)(16,92)(17,93)(18,94)(19,95)(20,96)(21,97)(22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,106)(31,107)(32,108)(33,109)(34,110)(35,111)(36,112)(37,113)(38,114)(39,115)(40,116)(41,157)(42,158)(43,159)(44,160)(45,121)(46,122)(47,123)(48,124)(49,125)(50,126)(51,127)(52,128)(53,129)(54,130)(55,131)(56,132)(57,133)(58,134)(59,135)(60,136)(61,137)(62,138)(63,139)(64,140)(65,141)(66,142)(67,143)(68,144)(69,145)(70,146)(71,147)(72,148)(73,149)(74,150)(75,151)(76,152)(77,153)(78,154)(79,155)(80,156) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,59,135,117),(2,60,136,118),(3,61,137,119),(4,62,138,120),(5,63,139,81),(6,64,140,82),(7,65,141,83),(8,66,142,84),(9,67,143,85),(10,68,144,86),(11,69,145,87),(12,70,146,88),(13,71,147,89),(14,72,148,90),(15,73,149,91),(16,74,150,92),(17,75,151,93),(18,76,152,94),(19,77,153,95),(20,78,154,96),(21,79,155,97),(22,80,156,98),(23,41,157,99),(24,42,158,100),(25,43,159,101),(26,44,160,102),(27,45,121,103),(28,46,122,104),(29,47,123,105),(30,48,124,106),(31,49,125,107),(32,50,126,108),(33,51,127,109),(34,52,128,110),(35,53,129,111),(36,54,130,112),(37,55,131,113),(38,56,132,114),(39,57,133,115),(40,58,134,116)], [(1,117),(2,118),(3,119),(4,120),(5,81),(6,82),(7,83),(8,84),(9,85),(10,86),(11,87),(12,88),(13,89),(14,90),(15,91),(16,92),(17,93),(18,94),(19,95),(20,96),(21,97),(22,98),(23,99),(24,100),(25,101),(26,102),(27,103),(28,104),(29,105),(30,106),(31,107),(32,108),(33,109),(34,110),(35,111),(36,112),(37,113),(38,114),(39,115),(40,116),(41,157),(42,158),(43,159),(44,160),(45,121),(46,122),(47,123),(48,124),(49,125),(50,126),(51,127),(52,128),(53,129),(54,130),(55,131),(56,132),(57,133),(58,134),(59,135),(60,136),(61,137),(62,138),(63,139),(64,140),(65,141),(66,142),(67,143),(68,144),(69,145),(70,146),(71,147),(72,148),(73,149),(74,150),(75,151),(76,152),(77,153),(78,154),(79,155),(80,156)]])

200 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4L5A5B5C5D8A···8H8I···8T10A···10L10M···10AB20A···20P20Q···20AV40A···40AF40AG···40CB
order1222222244444···455558···88···810···1010···1020···2020···2040···4040···40
size1111222211112···211111···12···21···12···21···12···21···12···2

200 irreducible representations

dim11111111111111111111222222
type+++++++
imageC1C2C2C2C2C2C4C4C4C5C8C10C10C10C10C10C20C20C20C40D4C4○D4C8○D4C5×D4C5×C4○D4C5×C8○D4
kernelD4×C40C4×C40C5×C22⋊C8C5×C4⋊C8D4×C20C22×C40C5×C22⋊C4C5×C4⋊C4D4×C10C8×D4C5×D4C4×C8C22⋊C8C4⋊C8C4×D4C22×C8C22⋊C4C4⋊C4C2×D4D4C40C20C10C8C4C2
# reps112112422416484481688642248816

Matrix representation of D4×C40 in GL3(𝔽41) generated by

3800
020
002
,
4000
0118
0940
,
100
0118
0040
G:=sub<GL(3,GF(41))| [38,0,0,0,2,0,0,0,2],[40,0,0,0,1,9,0,18,40],[1,0,0,0,1,0,0,18,40] >;

D4×C40 in GAP, Magma, Sage, TeX

D_4\times C_{40}
% in TeX

G:=Group("D4xC40");
// GroupNames label

G:=SmallGroup(320,935);
// by ID

G=gap.SmallGroup(320,935);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,560,589,436,124]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽