Extensions 1→N→G→Q→1 with N=C2×Q8⋊D5 and Q=C2

Direct product G=N×Q with N=C2×Q8⋊D5 and Q=C2
dρLabelID
C22×Q8⋊D5160C2^2xQ8:D5320,1479

Semidirect products G=N:Q with N=C2×Q8⋊D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q8⋊D5)⋊1C2 = D20.6D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5808+(C2xQ8:D5):1C2320,381
(C2×Q8⋊D5)⋊2C2 = Q82D20φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):2C2320,433
(C2×Q8⋊D5)⋊3C2 = D102SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):3C2320,434
(C2×Q8⋊D5)⋊4C2 = D204D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):4C2320,438
(C2×Q8⋊D5)⋊5C2 = C5⋊(C8⋊D4)φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):5C2320,439
(C2×Q8⋊D5)⋊6C2 = D20.12D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):6C2320,446
(C2×Q8⋊D5)⋊7C2 = Q8⋊D20φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):7C2320,654
(C2×Q8⋊D5)⋊8C2 = D20.36D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D580(C2xQ8:D5):8C2320,673
(C2×Q8⋊D5)⋊9C2 = D20.37D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):9C2320,674
(C2×Q8⋊D5)⋊10C2 = C52C824D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):10C2320,675
(C2×Q8⋊D5)⋊11C2 = C22⋊Q8⋊D5φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):11C2320,676
(C2×Q8⋊D5)⋊12C2 = D20.23D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):12C2320,684
(C2×Q8⋊D5)⋊13C2 = C42.64D10φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):13C2320,685
(C2×Q8⋊D5)⋊14C2 = C42.214D10φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):14C2320,686
(C2×Q8⋊D5)⋊15C2 = C206SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):15C2320,712
(C2×Q8⋊D5)⋊16C2 = Dic55SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):16C2320,790
(C2×Q8⋊D5)⋊17C2 = D106SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊D580(C2xQ8:D5):17C2320,796
(C2×Q8⋊D5)⋊18C2 = C4015D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):18C2320,802
(C2×Q8⋊D5)⋊19C2 = C409D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):19C2320,803
(C2×Q8⋊D5)⋊20C2 = D20.17D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):20C2320,814
(C2×Q8⋊D5)⋊21C2 = C40.28D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):21C2320,818
(C2×Q8⋊D5)⋊22C2 = M4(2).15D10φ: C2/C1C2 ⊆ Out C2×Q8⋊D5808+(C2xQ8:D5):22C2320,830
(C2×Q8⋊D5)⋊23C2 = (C5×Q8)⋊13D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):23C2320,854
(C2×Q8⋊D5)⋊24C2 = (C5×D4)⋊14D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):24C2320,865
(C2×Q8⋊D5)⋊25C2 = C2×D5×SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊D580(C2xQ8:D5):25C2320,1430
(C2×Q8⋊D5)⋊26C2 = C2×D40⋊C2φ: C2/C1C2 ⊆ Out C2×Q8⋊D580(C2xQ8:D5):26C2320,1431
(C2×Q8⋊D5)⋊27C2 = C2×Q16⋊D5φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):27C2320,1436
(C2×Q8⋊D5)⋊28C2 = C2×Q8.D10φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):28C2320,1437
(C2×Q8⋊D5)⋊29C2 = C40.C23φ: C2/C1C2 ⊆ Out C2×Q8⋊D5808+(C2xQ8:D5):29C2320,1450
(C2×Q8⋊D5)⋊30C2 = C2×C20.C23φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5):30C2320,1480
(C2×Q8⋊D5)⋊31C2 = C2×D4⋊D10φ: C2/C1C2 ⊆ Out C2×Q8⋊D580(C2xQ8:D5):31C2320,1492
(C2×Q8⋊D5)⋊32C2 = D20.34C23φ: C2/C1C2 ⊆ Out C2×Q8⋊D5808+(C2xQ8:D5):32C2320,1509
(C2×Q8⋊D5)⋊33C2 = C2×D4.8D10φ: trivial image160(C2xQ8:D5):33C2320,1493

Non-split extensions G=N.Q with N=C2×Q8⋊D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q8⋊D5).1C2 = Dic57SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5).1C2320,415
(C2×Q8⋊D5).2C2 = Q8⋊D56C4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5).2C2320,444
(C2×Q8⋊D5).3C2 = Dic5⋊SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5).3C2320,445
(C2×Q8⋊D5).4C2 = C42.56D10φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5).4C2320,653
(C2×Q8⋊D5).5C2 = Q8.1D20φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5).5C2320,655
(C2×Q8⋊D5).6C2 = C205SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5).6C2320,710
(C2×Q8⋊D5).7C2 = C42.80D10φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5).7C2320,713
(C2×Q8⋊D5).8C2 = (C2×Q16)⋊D5φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5).8C2320,812
(C2×Q8⋊D5).9C2 = C40.37D4φ: C2/C1C2 ⊆ Out C2×Q8⋊D5160(C2xQ8:D5).9C2320,817
(C2×Q8⋊D5).10C2 = C4×Q8⋊D5φ: trivial image160(C2xQ8:D5).10C2320,652

׿
×
𝔽