Copied to
clipboard

G = C205SD16order 320 = 26·5

5th semidirect product of C20 and SD16 acting via SD16/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C205SD16, D20.24D4, C42.78D10, C4⋊Q81D5, C42(Q8⋊D5), C4.56(D4×D5), C203C833C2, C20.36(C2×D4), (C4×D20).17C2, (C2×C20).154D4, C54(D4.D4), (C2×Q8).44D10, C20.80(C4○D4), C4.5(D42D5), Q8⋊Dic523C2, C10.75(C2×SD16), C2.14(C202D4), (C2×C20).401C23, (C4×C20).130C22, (Q8×C10).62C22, C10.105(C4⋊D4), (C2×D20).255C22, C10.95(C8.C22), C4⋊Dic5.346C22, C2.16(C20.C23), (C5×C4⋊Q8)⋊1C2, (C2×Q8⋊D5).6C2, C2.13(C2×Q8⋊D5), (C2×C10).532(C2×D4), (C2×C4).187(C5⋊D4), (C2×C4).498(C22×D5), C22.204(C2×C5⋊D4), (C2×C52C8).135C22, SmallGroup(320,710)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C205SD16
C1C5C10C20C2×C20C2×D20C4×D20 — C205SD16
C5C10C2×C20 — C205SD16
C1C22C42C4⋊Q8

Generators and relations for C205SD16
 G = < a,b,c | a20=b8=c2=1, bab-1=a-1, cac=a9, cbc=b3 >

Subgroups: 486 in 120 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, Dic5, C20, C20, C20, D10, C2×C10, Q8⋊C4, C4⋊C8, C4×D4, C4⋊Q8, C2×SD16, C52C8, C4×D5, D20, D20, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, D4.D4, C2×C52C8, C4⋊Dic5, D10⋊C4, Q8⋊D5, C4×C20, C5×C4⋊C4, C2×C4×D5, C2×D20, Q8×C10, C203C8, Q8⋊Dic5, C4×D20, C2×Q8⋊D5, C5×C4⋊Q8, C205SD16
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C4⋊D4, C2×SD16, C8.C22, C5⋊D4, C22×D5, D4.D4, Q8⋊D5, D4×D5, D42D5, C2×C5⋊D4, C202D4, C2×Q8⋊D5, C20.C23, C205SD16

Smallest permutation representation of C205SD16
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 109 36 41 86 71 150 132)(2 108 37 60 87 70 151 131)(3 107 38 59 88 69 152 130)(4 106 39 58 89 68 153 129)(5 105 40 57 90 67 154 128)(6 104 21 56 91 66 155 127)(7 103 22 55 92 65 156 126)(8 102 23 54 93 64 157 125)(9 101 24 53 94 63 158 124)(10 120 25 52 95 62 159 123)(11 119 26 51 96 61 160 122)(12 118 27 50 97 80 141 121)(13 117 28 49 98 79 142 140)(14 116 29 48 99 78 143 139)(15 115 30 47 100 77 144 138)(16 114 31 46 81 76 145 137)(17 113 32 45 82 75 146 136)(18 112 33 44 83 74 147 135)(19 111 34 43 84 73 148 134)(20 110 35 42 85 72 149 133)
(2 10)(3 19)(4 8)(5 17)(7 15)(9 13)(12 20)(14 18)(21 155)(22 144)(23 153)(24 142)(25 151)(26 160)(27 149)(28 158)(29 147)(30 156)(31 145)(32 154)(33 143)(34 152)(35 141)(36 150)(37 159)(38 148)(39 157)(40 146)(41 109)(42 118)(43 107)(44 116)(45 105)(46 114)(47 103)(48 112)(49 101)(50 110)(51 119)(52 108)(53 117)(54 106)(55 115)(56 104)(57 113)(58 102)(59 111)(60 120)(61 122)(62 131)(63 140)(64 129)(65 138)(66 127)(67 136)(68 125)(69 134)(70 123)(71 132)(72 121)(73 130)(74 139)(75 128)(76 137)(77 126)(78 135)(79 124)(80 133)(82 90)(83 99)(84 88)(85 97)(87 95)(89 93)(92 100)(94 98)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,109,36,41,86,71,150,132)(2,108,37,60,87,70,151,131)(3,107,38,59,88,69,152,130)(4,106,39,58,89,68,153,129)(5,105,40,57,90,67,154,128)(6,104,21,56,91,66,155,127)(7,103,22,55,92,65,156,126)(8,102,23,54,93,64,157,125)(9,101,24,53,94,63,158,124)(10,120,25,52,95,62,159,123)(11,119,26,51,96,61,160,122)(12,118,27,50,97,80,141,121)(13,117,28,49,98,79,142,140)(14,116,29,48,99,78,143,139)(15,115,30,47,100,77,144,138)(16,114,31,46,81,76,145,137)(17,113,32,45,82,75,146,136)(18,112,33,44,83,74,147,135)(19,111,34,43,84,73,148,134)(20,110,35,42,85,72,149,133), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,155)(22,144)(23,153)(24,142)(25,151)(26,160)(27,149)(28,158)(29,147)(30,156)(31,145)(32,154)(33,143)(34,152)(35,141)(36,150)(37,159)(38,148)(39,157)(40,146)(41,109)(42,118)(43,107)(44,116)(45,105)(46,114)(47,103)(48,112)(49,101)(50,110)(51,119)(52,108)(53,117)(54,106)(55,115)(56,104)(57,113)(58,102)(59,111)(60,120)(61,122)(62,131)(63,140)(64,129)(65,138)(66,127)(67,136)(68,125)(69,134)(70,123)(71,132)(72,121)(73,130)(74,139)(75,128)(76,137)(77,126)(78,135)(79,124)(80,133)(82,90)(83,99)(84,88)(85,97)(87,95)(89,93)(92,100)(94,98)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,109,36,41,86,71,150,132)(2,108,37,60,87,70,151,131)(3,107,38,59,88,69,152,130)(4,106,39,58,89,68,153,129)(5,105,40,57,90,67,154,128)(6,104,21,56,91,66,155,127)(7,103,22,55,92,65,156,126)(8,102,23,54,93,64,157,125)(9,101,24,53,94,63,158,124)(10,120,25,52,95,62,159,123)(11,119,26,51,96,61,160,122)(12,118,27,50,97,80,141,121)(13,117,28,49,98,79,142,140)(14,116,29,48,99,78,143,139)(15,115,30,47,100,77,144,138)(16,114,31,46,81,76,145,137)(17,113,32,45,82,75,146,136)(18,112,33,44,83,74,147,135)(19,111,34,43,84,73,148,134)(20,110,35,42,85,72,149,133), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,155)(22,144)(23,153)(24,142)(25,151)(26,160)(27,149)(28,158)(29,147)(30,156)(31,145)(32,154)(33,143)(34,152)(35,141)(36,150)(37,159)(38,148)(39,157)(40,146)(41,109)(42,118)(43,107)(44,116)(45,105)(46,114)(47,103)(48,112)(49,101)(50,110)(51,119)(52,108)(53,117)(54,106)(55,115)(56,104)(57,113)(58,102)(59,111)(60,120)(61,122)(62,131)(63,140)(64,129)(65,138)(66,127)(67,136)(68,125)(69,134)(70,123)(71,132)(72,121)(73,130)(74,139)(75,128)(76,137)(77,126)(78,135)(79,124)(80,133)(82,90)(83,99)(84,88)(85,97)(87,95)(89,93)(92,100)(94,98) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,109,36,41,86,71,150,132),(2,108,37,60,87,70,151,131),(3,107,38,59,88,69,152,130),(4,106,39,58,89,68,153,129),(5,105,40,57,90,67,154,128),(6,104,21,56,91,66,155,127),(7,103,22,55,92,65,156,126),(8,102,23,54,93,64,157,125),(9,101,24,53,94,63,158,124),(10,120,25,52,95,62,159,123),(11,119,26,51,96,61,160,122),(12,118,27,50,97,80,141,121),(13,117,28,49,98,79,142,140),(14,116,29,48,99,78,143,139),(15,115,30,47,100,77,144,138),(16,114,31,46,81,76,145,137),(17,113,32,45,82,75,146,136),(18,112,33,44,83,74,147,135),(19,111,34,43,84,73,148,134),(20,110,35,42,85,72,149,133)], [(2,10),(3,19),(4,8),(5,17),(7,15),(9,13),(12,20),(14,18),(21,155),(22,144),(23,153),(24,142),(25,151),(26,160),(27,149),(28,158),(29,147),(30,156),(31,145),(32,154),(33,143),(34,152),(35,141),(36,150),(37,159),(38,148),(39,157),(40,146),(41,109),(42,118),(43,107),(44,116),(45,105),(46,114),(47,103),(48,112),(49,101),(50,110),(51,119),(52,108),(53,117),(54,106),(55,115),(56,104),(57,113),(58,102),(59,111),(60,120),(61,122),(62,131),(63,140),(64,129),(65,138),(66,127),(67,136),(68,125),(69,134),(70,123),(71,132),(72,121),(73,130),(74,139),(75,128),(76,137),(77,126),(78,135),(79,124),(80,133),(82,90),(83,99),(84,88),(85,97),(87,95),(89,93),(92,100),(94,98)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F20A···20L20M···20T
order12222244444444455888810···1020···2020···20
size111120202222488202022202020202···24···48···8

47 irreducible representations

dim1111112222222244444
type+++++++++++-++-
imageC1C2C2C2C2C2D4D4D5SD16C4○D4D10D10C5⋊D4C8.C22Q8⋊D5D4×D5D42D5C20.C23
kernelC205SD16C203C8Q8⋊Dic5C4×D20C2×Q8⋊D5C5×C4⋊Q8D20C2×C20C4⋊Q8C20C20C42C2×Q8C2×C4C10C4C4C4C2
# reps1121212224224814224

Matrix representation of C205SD16 in GL6(𝔽41)

4000000
0400000
0004000
0013400
00001618
00002925
,
15150000
26150000
003300
00243800
00002937
0000512
,
100000
0400000
0034700
0040700
000010
000001

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,40,34,0,0,0,0,0,0,16,29,0,0,0,0,18,25],[15,26,0,0,0,0,15,15,0,0,0,0,0,0,3,24,0,0,0,0,3,38,0,0,0,0,0,0,29,5,0,0,0,0,37,12],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,34,40,0,0,0,0,7,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C205SD16 in GAP, Magma, Sage, TeX

C_{20}\rtimes_5{\rm SD}_{16}
% in TeX

G:=Group("C20:5SD16");
// GroupNames label

G:=SmallGroup(320,710);
// by ID

G=gap.SmallGroup(320,710);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,254,219,184,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c|a^20=b^8=c^2=1,b*a*b^-1=a^-1,c*a*c=a^9,c*b*c=b^3>;
// generators/relations

׿
×
𝔽