metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: M4(2).15D10, (C5×D4).15D4, C4.180(D4×D5), C5⋊2C8.48D4, (C5×Q8).15D4, C8.C22⋊2D5, C4○D4.26D10, C20.199(C2×D4), C5⋊7(D4.3D4), D4.6(C5⋊D4), D4.Dic5⋊7C2, (C2×Q8).69D10, Q8.6(C5⋊D4), D4⋊D10.2C2, C20.10D4⋊9C2, (C2×C20).18C23, C20.53D4⋊11C2, C20.46D4⋊12C2, (Q8×C10).96C22, C10.126(C4⋊D4), (C2×D20).135C22, C4.Dic5.27C22, C2.32(Dic5⋊D4), C22.15(D4⋊2D5), (C5×M4(2)).25C22, (C2×Q8⋊D5)⋊22C2, C4.55(C2×C5⋊D4), (C5×C8.C22)⋊6C2, (C2×C4).18(C22×D5), (C2×C10).38(C4○D4), (C5×C4○D4).16C22, (C2×C5⋊2C8).172C22, SmallGroup(320,830)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for M4(2).15D10
G = < a,b,c,d | a8=b2=c10=1, d2=a2, bab=a5, cac-1=a3, dad-1=a3b, cbc-1=dbd-1=a4b, dcd-1=a2c-1 >
Subgroups: 414 in 104 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, C10, C10, C2×C8, M4(2), M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C4○D4, C20, C20, D10, C2×C10, C2×C10, C4.D4, C4.10D4, C8.C4, C8○D4, C2×SD16, C8⋊C22, C8.C22, C5⋊2C8, C5⋊2C8, C40, D20, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, C22×D5, D4.3D4, C2×C5⋊2C8, C2×C5⋊2C8, C4.Dic5, C4.Dic5, D4⋊D5, Q8⋊D5, C5×M4(2), C5×SD16, C5×Q16, C2×D20, Q8×C10, C5×C4○D4, C20.53D4, C20.46D4, C20.10D4, C2×Q8⋊D5, D4.Dic5, D4⋊D10, C5×C8.C22, M4(2).15D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C5⋊D4, C22×D5, D4.3D4, D4×D5, D4⋊2D5, C2×C5⋊D4, Dic5⋊D4, M4(2).15D10
(1 15 51 78 63 41 40 23)(2 79 31 16 64 24 52 42)(3 17 53 80 65 43 32 25)(4 71 33 18 66 26 54 44)(5 19 55 72 67 45 34 27)(6 73 35 20 68 28 56 46)(7 11 57 74 69 47 36 29)(8 75 37 12 70 30 58 48)(9 13 59 76 61 49 38 21)(10 77 39 14 62 22 60 50)
(2 64)(4 66)(6 68)(8 70)(10 62)(11 47)(13 49)(15 41)(17 43)(19 45)(21 76)(23 78)(25 80)(27 72)(29 74)(31 52)(33 54)(35 56)(37 58)(39 60)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 10 51 39 63 62 40 60)(2 59 31 61 64 38 52 9)(3 8 53 37 65 70 32 58)(4 57 33 69 66 36 54 7)(5 6 55 35 67 68 34 56)(11 18 74 26 47 44 29 71)(12 80 30 43 48 25 75 17)(13 16 76 24 49 42 21 79)(14 78 22 41 50 23 77 15)(19 20 72 28 45 46 27 73)
G:=sub<Sym(80)| (1,15,51,78,63,41,40,23)(2,79,31,16,64,24,52,42)(3,17,53,80,65,43,32,25)(4,71,33,18,66,26,54,44)(5,19,55,72,67,45,34,27)(6,73,35,20,68,28,56,46)(7,11,57,74,69,47,36,29)(8,75,37,12,70,30,58,48)(9,13,59,76,61,49,38,21)(10,77,39,14,62,22,60,50), (2,64)(4,66)(6,68)(8,70)(10,62)(11,47)(13,49)(15,41)(17,43)(19,45)(21,76)(23,78)(25,80)(27,72)(29,74)(31,52)(33,54)(35,56)(37,58)(39,60), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10,51,39,63,62,40,60)(2,59,31,61,64,38,52,9)(3,8,53,37,65,70,32,58)(4,57,33,69,66,36,54,7)(5,6,55,35,67,68,34,56)(11,18,74,26,47,44,29,71)(12,80,30,43,48,25,75,17)(13,16,76,24,49,42,21,79)(14,78,22,41,50,23,77,15)(19,20,72,28,45,46,27,73)>;
G:=Group( (1,15,51,78,63,41,40,23)(2,79,31,16,64,24,52,42)(3,17,53,80,65,43,32,25)(4,71,33,18,66,26,54,44)(5,19,55,72,67,45,34,27)(6,73,35,20,68,28,56,46)(7,11,57,74,69,47,36,29)(8,75,37,12,70,30,58,48)(9,13,59,76,61,49,38,21)(10,77,39,14,62,22,60,50), (2,64)(4,66)(6,68)(8,70)(10,62)(11,47)(13,49)(15,41)(17,43)(19,45)(21,76)(23,78)(25,80)(27,72)(29,74)(31,52)(33,54)(35,56)(37,58)(39,60), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10,51,39,63,62,40,60)(2,59,31,61,64,38,52,9)(3,8,53,37,65,70,32,58)(4,57,33,69,66,36,54,7)(5,6,55,35,67,68,34,56)(11,18,74,26,47,44,29,71)(12,80,30,43,48,25,75,17)(13,16,76,24,49,42,21,79)(14,78,22,41,50,23,77,15)(19,20,72,28,45,46,27,73) );
G=PermutationGroup([[(1,15,51,78,63,41,40,23),(2,79,31,16,64,24,52,42),(3,17,53,80,65,43,32,25),(4,71,33,18,66,26,54,44),(5,19,55,72,67,45,34,27),(6,73,35,20,68,28,56,46),(7,11,57,74,69,47,36,29),(8,75,37,12,70,30,58,48),(9,13,59,76,61,49,38,21),(10,77,39,14,62,22,60,50)], [(2,64),(4,66),(6,68),(8,70),(10,62),(11,47),(13,49),(15,41),(17,43),(19,45),(21,76),(23,78),(25,80),(27,72),(29,74),(31,52),(33,54),(35,56),(37,58),(39,60)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,10,51,39,63,62,40,60),(2,59,31,61,64,38,52,9),(3,8,53,37,65,70,32,58),(4,57,33,69,66,36,54,7),(5,6,55,35,67,68,34,56),(11,18,74,26,47,44,29,71),(12,80,30,43,48,25,75,17),(13,16,76,24,49,42,21,79),(14,78,22,41,50,23,77,15),(19,20,72,28,45,46,27,73)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 5A | 5B | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 10A | 10B | 10C | 10D | 10E | 10F | 20A | 20B | 20C | 20D | 20E | ··· | 20J | 40A | 40B | 40C | 40D |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 40 | 40 | 40 | 40 |
size | 1 | 1 | 2 | 4 | 40 | 2 | 2 | 4 | 8 | 2 | 2 | 8 | 10 | 10 | 20 | 20 | 20 | 40 | 2 | 2 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D5 | C4○D4 | D10 | D10 | D10 | C5⋊D4 | C5⋊D4 | D4.3D4 | D4×D5 | D4⋊2D5 | M4(2).15D10 |
kernel | M4(2).15D10 | C20.53D4 | C20.46D4 | C20.10D4 | C2×Q8⋊D5 | D4.Dic5 | D4⋊D10 | C5×C8.C22 | C5⋊2C8 | C5×D4 | C5×Q8 | C8.C22 | C2×C10 | M4(2) | C2×Q8 | C4○D4 | D4 | Q8 | C5 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 |
Matrix representation of M4(2).15D10 ►in GL8(𝔽41)
0 | 0 | 17 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 24 | 0 | 0 | 0 | 0 |
24 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
40 | 17 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
0 | 0 | 0 | 0 | 0 | 0 | 26 | 0 |
0 | 0 | 0 | 0 | 11 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 26 | 30 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 7 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 40 | 0 | 0 | 0 | 0 |
7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
34 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 34 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 7 | 0 | 0 | 0 | 0 |
7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
40 | 34 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 39 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 40 | 0 | 0 |
G:=sub<GL(8,GF(41))| [0,0,24,40,0,0,0,0,0,0,1,17,0,0,0,0,17,1,0,0,0,0,0,0,40,24,0,0,0,0,0,0,0,0,0,0,0,0,11,26,0,0,0,0,0,0,30,30,0,0,0,0,0,26,0,0,0,0,0,0,11,0,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[0,0,7,34,0,0,0,0,0,0,7,40,0,0,0,0,7,34,0,0,0,0,0,0,7,40,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,0,7,40,0,0,0,0,0,0,7,34,0,0,0,0,34,1,0,0,0,0,0,0,34,7,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,39,40,0,0] >;
M4(2).15D10 in GAP, Magma, Sage, TeX
M_4(2)._{15}D_{10}
% in TeX
G:=Group("M4(2).15D10");
// GroupNames label
G:=SmallGroup(320,830);
// by ID
G=gap.SmallGroup(320,830);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,254,219,184,1123,297,136,1684,851,438,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^10=1,d^2=a^2,b*a*b=a^5,c*a*c^-1=a^3,d*a*d^-1=a^3*b,c*b*c^-1=d*b*d^-1=a^4*b,d*c*d^-1=a^2*c^-1>;
// generators/relations