Copied to
clipboard

G = A4×D15order 360 = 23·32·5

Direct product of A4 and D15

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×D15, C5⋊(S3×A4), C3⋊(D5×A4), (C5×A4)⋊2S3, C151(C2×A4), (C2×C30)⋊1C6, (C3×A4)⋊3D5, (A4×C15)⋊3C2, (C22×D15)⋊C3, C222(C3×D15), (C2×C6)⋊(C3×D5), (C2×C10)⋊3(C3×S3), SmallGroup(360,144)

Series: Derived Chief Lower central Upper central

C1C2×C30 — A4×D15
C1C5C15C2×C30A4×C15 — A4×D15
C2×C30 — A4×D15
C1

Generators and relations for A4×D15
 G = < a,b,c,d,e | a2=b2=c3=d15=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

3C2
15C2
45C2
4C3
8C3
45C22
45C22
3C6
5S3
15S3
60C6
4C32
3C10
3D5
9D5
4C15
8C15
15C23
2A4
15D6
15D6
20C3×S3
9D10
9D10
3C30
3D15
12C3×D5
4C3×C15
5C22×S3
15C2×A4
3C22×D5
2C5×A4
3D30
3D30
4C3×D15
5S3×A4
3D5×A4

Smallest permutation representation of A4×D15
On 60 points
Generators in S60
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 16)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 53)(17 54)(18 55)(19 56)(20 57)(21 58)(22 59)(23 60)(24 46)(25 47)(26 48)(27 49)(28 50)(29 51)(30 52)
(16 38 53)(17 39 54)(18 40 55)(19 41 56)(20 42 57)(21 43 58)(22 44 59)(23 45 60)(24 31 46)(25 32 47)(26 33 48)(27 34 49)(28 35 50)(29 36 51)(30 37 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(23 24)(31 45)(32 44)(33 43)(34 42)(35 41)(36 40)(37 39)(46 60)(47 59)(48 58)(49 57)(50 56)(51 55)(52 54)

G:=sub<Sym(60)| (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52), (16,38,53)(17,39,54)(18,40,55)(19,41,56)(20,42,57)(21,43,58)(22,44,59)(23,45,60)(24,31,46)(25,32,47)(26,33,48)(27,34,49)(28,35,50)(29,36,51)(30,37,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)>;

G:=Group( (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52), (16,38,53)(17,39,54)(18,40,55)(19,41,56)(20,42,57)(21,43,58)(22,44,59)(23,45,60)(24,31,46)(25,32,47)(26,33,48)(27,34,49)(28,35,50)(29,36,51)(30,37,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54) );

G=PermutationGroup([[(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,16),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,53),(17,54),(18,55),(19,56),(20,57),(21,58),(22,59),(23,60),(24,46),(25,47),(26,48),(27,49),(28,50),(29,51),(30,52)], [(16,38,53),(17,39,54),(18,40,55),(19,41,56),(20,42,57),(21,43,58),(22,44,59),(23,45,60),(24,31,46),(25,32,47),(26,33,48),(27,34,49),(28,35,50),(29,36,51),(30,37,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(23,24),(31,45),(32,44),(33,43),(34,42),(35,41),(36,40),(37,39),(46,60),(47,59),(48,58),(49,57),(50,56),(51,55),(52,54)]])

36 conjugacy classes

class 1 2A2B2C3A3B3C3D3E5A5B6A6B6C10A10B15A15B15C15D15E···15P30A30B30C30D
order1222333335566610101515151515···1530303030
size1315452448822660606622228···86666

36 irreducible representations

dim111122222233666
type++++++++++
imageC1C2C3C6S3D5C3×S3D15C3×D5C3×D15A4C2×A4S3×A4D5×A4A4×D15
kernelA4×D15A4×C15C22×D15C2×C30C5×A4C3×A4C2×C10A4C2×C6C22D15C15C5C3C1
# reps112212244811124

Matrix representation of A4×D15 in GL5(𝔽31)

10000
01000
00010
00100
00303030
,
10000
01000
00001
00303030
00100
,
50000
05000
00100
00303030
00010
,
119000
65000
00100
00010
00001
,
1420000
2917000
003000
000300
000030

G:=sub<GL(5,GF(31))| [1,0,0,0,0,0,1,0,0,0,0,0,0,1,30,0,0,1,0,30,0,0,0,0,30],[1,0,0,0,0,0,1,0,0,0,0,0,0,30,1,0,0,0,30,0,0,0,1,30,0],[5,0,0,0,0,0,5,0,0,0,0,0,1,30,0,0,0,0,30,1,0,0,0,30,0],[11,6,0,0,0,9,5,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[14,29,0,0,0,20,17,0,0,0,0,0,30,0,0,0,0,0,30,0,0,0,0,0,30] >;

A4×D15 in GAP, Magma, Sage, TeX

A_4\times D_{15}
% in TeX

G:=Group("A4xD15");
// GroupNames label

G:=SmallGroup(360,144);
// by ID

G=gap.SmallGroup(360,144);
# by ID

G:=PCGroup([6,-2,-3,-2,2,-3,-5,170,81,1444,10373]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^15=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of A4×D15 in TeX

׿
×
𝔽