Extensions 1→N→G→Q→1 with N=C2×C18 and Q=C2×C6

Direct product G=N×Q with N=C2×C18 and Q=C2×C6
dρLabelID
C22×C6×C18432C2^2xC6xC18432,562

Semidirect products G=N:Q with N=C2×C18 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
(C2×C18)⋊(C2×C6) = D4×C9⋊C6φ: C2×C6/C1C2×C6 ⊆ Aut C2×C183612+(C2xC18):(C2xC6)432,362
(C2×C18)⋊2(C2×C6) = C2×D9⋊A4φ: C2×C6/C2C6 ⊆ Aut C2×C18546+(C2xC18):2(C2xC6)432,539
(C2×C18)⋊3(C2×C6) = C2×A4×D9φ: C2×C6/C2C6 ⊆ Aut C2×C18546+(C2xC18):3(C2xC6)432,540
(C2×C18)⋊4(C2×C6) = C2×Dic9⋊C6φ: C2×C6/C2C6 ⊆ Aut C2×C1872(C2xC18):4(C2xC6)432,379
(C2×C18)⋊5(C2×C6) = C23×C9⋊C6φ: C2×C6/C2C6 ⊆ Aut C2×C1872(C2xC18):5(C2xC6)432,559
(C2×C18)⋊6(C2×C6) = C2×D4×3- 1+2φ: C2×C6/C2C6 ⊆ Aut C2×C1872(C2xC18):6(C2xC6)432,405
(C2×C18)⋊7(C2×C6) = C3×D4×D9φ: C2×C6/C3C22 ⊆ Aut C2×C18724(C2xC18):7(C2xC6)432,356
(C2×C18)⋊8(C2×C6) = A4×C2×C18φ: C2×C6/C22C3 ⊆ Aut C2×C18108(C2xC18):8(C2xC6)432,546
(C2×C18)⋊9(C2×C6) = C22×C9⋊A4φ: C2×C6/C22C3 ⊆ Aut C2×C18108(C2xC18):9(C2xC6)432,547
(C2×C18)⋊10(C2×C6) = C24×3- 1+2φ: C2×C6/C22C3 ⊆ Aut C2×C18144(C2xC18):10(C2xC6)432,564
(C2×C18)⋊11(C2×C6) = D4×C3×C18φ: C2×C6/C6C2 ⊆ Aut C2×C18216(C2xC18):11(C2xC6)432,403
(C2×C18)⋊12(C2×C6) = C6×C9⋊D4φ: C2×C6/C6C2 ⊆ Aut C2×C1872(C2xC18):12(C2xC6)432,374
(C2×C18)⋊13(C2×C6) = D9×C22×C6φ: C2×C6/C6C2 ⊆ Aut C2×C18144(C2xC18):13(C2xC6)432,556

Non-split extensions G=N.Q with N=C2×C18 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
(C2×C18).(C2×C6) = Dic182C6φ: C2×C6/C1C2×C6 ⊆ Aut C2×C187212-(C2xC18).(C2xC6)432,363
(C2×C18).2(C2×C6) = C4×C9⋊C12φ: C2×C6/C2C6 ⊆ Aut C2×C18144(C2xC18).2(C2xC6)432,144
(C2×C18).3(C2×C6) = Dic9⋊C12φ: C2×C6/C2C6 ⊆ Aut C2×C18144(C2xC18).3(C2xC6)432,145
(C2×C18).4(C2×C6) = C36⋊C12φ: C2×C6/C2C6 ⊆ Aut C2×C18144(C2xC18).4(C2xC6)432,146
(C2×C18).5(C2×C6) = D18⋊C12φ: C2×C6/C2C6 ⊆ Aut C2×C1872(C2xC18).5(C2xC6)432,147
(C2×C18).6(C2×C6) = C62.27D6φ: C2×C6/C2C6 ⊆ Aut C2×C1872(C2xC18).6(C2xC6)432,167
(C2×C18).7(C2×C6) = C2×C36.C6φ: C2×C6/C2C6 ⊆ Aut C2×C18144(C2xC18).7(C2xC6)432,352
(C2×C18).8(C2×C6) = C2×C4×C9⋊C6φ: C2×C6/C2C6 ⊆ Aut C2×C1872(C2xC18).8(C2xC6)432,353
(C2×C18).9(C2×C6) = C2×D36⋊C3φ: C2×C6/C2C6 ⊆ Aut C2×C1872(C2xC18).9(C2xC6)432,354
(C2×C18).10(C2×C6) = D366C6φ: C2×C6/C2C6 ⊆ Aut C2×C18726(C2xC18).10(C2xC6)432,355
(C2×C18).11(C2×C6) = C22×C9⋊C12φ: C2×C6/C2C6 ⊆ Aut C2×C18144(C2xC18).11(C2xC6)432,378
(C2×C18).12(C2×C6) = C4○D4×3- 1+2φ: C2×C6/C2C6 ⊆ Aut C2×C18726(C2xC18).12(C2xC6)432,411
(C2×C18).13(C2×C6) = C3×D42D9φ: C2×C6/C3C22 ⊆ Aut C2×C18724(C2xC18).13(C2xC6)432,357
(C2×C18).14(C2×C6) = C22×C9.A4φ: C2×C6/C22C3 ⊆ Aut C2×C18108(C2xC18).14(C2xC6)432,225
(C2×C18).15(C2×C6) = C42×3- 1+2φ: C2×C6/C22C3 ⊆ Aut C2×C18144(C2xC18).15(C2xC6)432,202
(C2×C18).16(C2×C6) = C22⋊C4×3- 1+2φ: C2×C6/C22C3 ⊆ Aut C2×C1872(C2xC18).16(C2xC6)432,205
(C2×C18).17(C2×C6) = C4⋊C4×3- 1+2φ: C2×C6/C22C3 ⊆ Aut C2×C18144(C2xC18).17(C2xC6)432,208
(C2×C18).18(C2×C6) = C22×C4×3- 1+2φ: C2×C6/C22C3 ⊆ Aut C2×C18144(C2xC18).18(C2xC6)432,402
(C2×C18).19(C2×C6) = C2×Q8×3- 1+2φ: C2×C6/C22C3 ⊆ Aut C2×C18144(C2xC18).19(C2xC6)432,408
(C2×C18).20(C2×C6) = D4×C54φ: C2×C6/C6C2 ⊆ Aut C2×C18216(C2xC18).20(C2xC6)432,54
(C2×C18).21(C2×C6) = C4○D4×C27φ: C2×C6/C6C2 ⊆ Aut C2×C182162(C2xC18).21(C2xC6)432,56
(C2×C18).22(C2×C6) = C4○D4×C3×C9φ: C2×C6/C6C2 ⊆ Aut C2×C18216(C2xC18).22(C2xC6)432,409
(C2×C18).23(C2×C6) = C12×Dic9φ: C2×C6/C6C2 ⊆ Aut C2×C18144(C2xC18).23(C2xC6)432,128
(C2×C18).24(C2×C6) = C3×Dic9⋊C4φ: C2×C6/C6C2 ⊆ Aut C2×C18144(C2xC18).24(C2xC6)432,129
(C2×C18).25(C2×C6) = C3×C4⋊Dic9φ: C2×C6/C6C2 ⊆ Aut C2×C18144(C2xC18).25(C2xC6)432,130
(C2×C18).26(C2×C6) = C3×D18⋊C4φ: C2×C6/C6C2 ⊆ Aut C2×C18144(C2xC18).26(C2xC6)432,134
(C2×C18).27(C2×C6) = C3×C18.D4φ: C2×C6/C6C2 ⊆ Aut C2×C1872(C2xC18).27(C2xC6)432,164
(C2×C18).28(C2×C6) = C6×Dic18φ: C2×C6/C6C2 ⊆ Aut C2×C18144(C2xC18).28(C2xC6)432,340
(C2×C18).29(C2×C6) = D9×C2×C12φ: C2×C6/C6C2 ⊆ Aut C2×C18144(C2xC18).29(C2xC6)432,342
(C2×C18).30(C2×C6) = C6×D36φ: C2×C6/C6C2 ⊆ Aut C2×C18144(C2xC18).30(C2xC6)432,343
(C2×C18).31(C2×C6) = C3×D365C2φ: C2×C6/C6C2 ⊆ Aut C2×C18722(C2xC18).31(C2xC6)432,344
(C2×C18).32(C2×C6) = C2×C6×Dic9φ: C2×C6/C6C2 ⊆ Aut C2×C18144(C2xC18).32(C2xC6)432,372
(C2×C18).33(C2×C6) = C22⋊C4×C27central extension (φ=1)216(C2xC18).33(C2xC6)432,21
(C2×C18).34(C2×C6) = C4⋊C4×C27central extension (φ=1)432(C2xC18).34(C2xC6)432,22
(C2×C18).35(C2×C6) = Q8×C54central extension (φ=1)432(C2xC18).35(C2xC6)432,55
(C2×C18).36(C2×C6) = C22⋊C4×C3×C9central extension (φ=1)216(C2xC18).36(C2xC6)432,203
(C2×C18).37(C2×C6) = C4⋊C4×C3×C9central extension (φ=1)432(C2xC18).37(C2xC6)432,206
(C2×C18).38(C2×C6) = Q8×C3×C18central extension (φ=1)432(C2xC18).38(C2xC6)432,406

׿
×
𝔽