Extensions 1→N→G→Q→1 with N=C3xC24 and Q=S3

Direct product G=NxQ with N=C3xC24 and Q=S3
dρLabelID
S3xC3xC24144S3xC3xC24432,464

Semidirect products G=N:Q with N=C3xC24 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C3xC24):1S3 = He3:4D8φ: S3/C1S3 ⊆ Aut C3xC24726+(C3xC24):1S3432,118
(C3xC24):2S3 = He3:5D8φ: S3/C1S3 ⊆ Aut C3xC24726(C3xC24):2S3432,176
(C3xC24):3S3 = He3:6SD16φ: S3/C1S3 ⊆ Aut C3xC24726(C3xC24):3S3432,117
(C3xC24):4S3 = He3:7SD16φ: S3/C1S3 ⊆ Aut C3xC24726(C3xC24):4S3432,175
(C3xC24):5S3 = C8xC32:C6φ: S3/C1S3 ⊆ Aut C3xC24726(C3xC24):5S3432,115
(C3xC24):6S3 = C8xHe3:C2φ: S3/C1S3 ⊆ Aut C3xC24723(C3xC24):6S3432,173
(C3xC24):7S3 = He3:5M4(2)φ: S3/C1S3 ⊆ Aut C3xC24726(C3xC24):7S3432,116
(C3xC24):8S3 = He3:6M4(2)φ: S3/C1S3 ⊆ Aut C3xC24726(C3xC24):8S3432,174
(C3xC24):9S3 = C33:12D8φ: S3/C3C2 ⊆ Aut C3xC24216(C3xC24):9S3432,499
(C3xC24):10S3 = C3xC32:5D8φ: S3/C3C2 ⊆ Aut C3xC24144(C3xC24):10S3432,483
(C3xC24):11S3 = C33:21SD16φ: S3/C3C2 ⊆ Aut C3xC24216(C3xC24):11S3432,498
(C3xC24):12S3 = C3xC24:2S3φ: S3/C3C2 ⊆ Aut C3xC24144(C3xC24):12S3432,482
(C3xC24):13S3 = C32xD24φ: S3/C3C2 ⊆ Aut C3xC24144(C3xC24):13S3432,467
(C3xC24):14S3 = C3:S3xC24φ: S3/C3C2 ⊆ Aut C3xC24144(C3xC24):14S3432,480
(C3xC24):15S3 = C8xC33:C2φ: S3/C3C2 ⊆ Aut C3xC24216(C3xC24):15S3432,496
(C3xC24):16S3 = C33:15M4(2)φ: S3/C3C2 ⊆ Aut C3xC24216(C3xC24):16S3432,497
(C3xC24):17S3 = C3xC24:S3φ: S3/C3C2 ⊆ Aut C3xC24144(C3xC24):17S3432,481
(C3xC24):18S3 = C32xC24:C2φ: S3/C3C2 ⊆ Aut C3xC24144(C3xC24):18S3432,466
(C3xC24):19S3 = C32xC8:S3φ: S3/C3C2 ⊆ Aut C3xC24144(C3xC24):19S3432,465

Non-split extensions G=N.Q with N=C3xC24 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C3xC24).1S3 = He3:4Q16φ: S3/C1S3 ⊆ Aut C3xC241446-(C3xC24).1S3432,114
(C3xC24).2S3 = C72.C6φ: S3/C1S3 ⊆ Aut C3xC241446-(C3xC24).2S3432,119
(C3xC24).3S3 = D72:C3φ: S3/C1S3 ⊆ Aut C3xC24726+(C3xC24).3S3432,123
(C3xC24).4S3 = He3:5Q16φ: S3/C1S3 ⊆ Aut C3xC241446(C3xC24).4S3432,177
(C3xC24).5S3 = C72:2C6φ: S3/C1S3 ⊆ Aut C3xC24726(C3xC24).5S3432,122
(C3xC24).6S3 = He3:3C16φ: S3/C1S3 ⊆ Aut C3xC241446(C3xC24).6S3432,30
(C3xC24).7S3 = C9:C48φ: S3/C1S3 ⊆ Aut C3xC241446(C3xC24).7S3432,31
(C3xC24).8S3 = He3:4C16φ: S3/C1S3 ⊆ Aut C3xC241443(C3xC24).8S3432,33
(C3xC24).9S3 = C8xC9:C6φ: S3/C1S3 ⊆ Aut C3xC24726(C3xC24).9S3432,120
(C3xC24).10S3 = C72:C6φ: S3/C1S3 ⊆ Aut C3xC24726(C3xC24).10S3432,121
(C3xC24).11S3 = C24.D9φ: S3/C3C2 ⊆ Aut C3xC24432(C3xC24).11S3432,168
(C3xC24).12S3 = C72:1S3φ: S3/C3C2 ⊆ Aut C3xC24216(C3xC24).12S3432,172
(C3xC24).13S3 = C33:12Q16φ: S3/C3C2 ⊆ Aut C3xC24432(C3xC24).13S3432,500
(C3xC24).14S3 = C3xDic36φ: S3/C3C2 ⊆ Aut C3xC241442(C3xC24).14S3432,104
(C3xC24).15S3 = C3xD72φ: S3/C3C2 ⊆ Aut C3xC241442(C3xC24).15S3432,108
(C3xC24).16S3 = C3xC32:5Q16φ: S3/C3C2 ⊆ Aut C3xC24144(C3xC24).16S3432,484
(C3xC24).17S3 = C24:D9φ: S3/C3C2 ⊆ Aut C3xC24216(C3xC24).17S3432,171
(C3xC24).18S3 = C3xC72:C2φ: S3/C3C2 ⊆ Aut C3xC241442(C3xC24).18S3432,107
(C3xC24).19S3 = C32xDic12φ: S3/C3C2 ⊆ Aut C3xC24144(C3xC24).19S3432,468
(C3xC24).20S3 = C3xC9:C16φ: S3/C3C2 ⊆ Aut C3xC241442(C3xC24).20S3432,28
(C3xC24).21S3 = C72.S3φ: S3/C3C2 ⊆ Aut C3xC24432(C3xC24).21S3432,32
(C3xC24).22S3 = D9xC24φ: S3/C3C2 ⊆ Aut C3xC241442(C3xC24).22S3432,105
(C3xC24).23S3 = C8xC9:S3φ: S3/C3C2 ⊆ Aut C3xC24216(C3xC24).23S3432,169
(C3xC24).24S3 = C72:S3φ: S3/C3C2 ⊆ Aut C3xC24216(C3xC24).24S3432,170
(C3xC24).25S3 = C3xC24.S3φ: S3/C3C2 ⊆ Aut C3xC24144(C3xC24).25S3432,230
(C3xC24).26S3 = C33:7C16φ: S3/C3C2 ⊆ Aut C3xC24432(C3xC24).26S3432,231
(C3xC24).27S3 = C3xC8:D9φ: S3/C3C2 ⊆ Aut C3xC241442(C3xC24).27S3432,106
(C3xC24).28S3 = C32xC3:C16central extension (φ=1)144(C3xC24).28S3432,229

׿
x
:
Z
F
o
wr
Q
<