extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC24).1S3 = He3:4Q16 | φ: S3/C1 → S3 ⊆ Aut C3xC24 | 144 | 6- | (C3xC24).1S3 | 432,114 |
(C3xC24).2S3 = C72.C6 | φ: S3/C1 → S3 ⊆ Aut C3xC24 | 144 | 6- | (C3xC24).2S3 | 432,119 |
(C3xC24).3S3 = D72:C3 | φ: S3/C1 → S3 ⊆ Aut C3xC24 | 72 | 6+ | (C3xC24).3S3 | 432,123 |
(C3xC24).4S3 = He3:5Q16 | φ: S3/C1 → S3 ⊆ Aut C3xC24 | 144 | 6 | (C3xC24).4S3 | 432,177 |
(C3xC24).5S3 = C72:2C6 | φ: S3/C1 → S3 ⊆ Aut C3xC24 | 72 | 6 | (C3xC24).5S3 | 432,122 |
(C3xC24).6S3 = He3:3C16 | φ: S3/C1 → S3 ⊆ Aut C3xC24 | 144 | 6 | (C3xC24).6S3 | 432,30 |
(C3xC24).7S3 = C9:C48 | φ: S3/C1 → S3 ⊆ Aut C3xC24 | 144 | 6 | (C3xC24).7S3 | 432,31 |
(C3xC24).8S3 = He3:4C16 | φ: S3/C1 → S3 ⊆ Aut C3xC24 | 144 | 3 | (C3xC24).8S3 | 432,33 |
(C3xC24).9S3 = C8xC9:C6 | φ: S3/C1 → S3 ⊆ Aut C3xC24 | 72 | 6 | (C3xC24).9S3 | 432,120 |
(C3xC24).10S3 = C72:C6 | φ: S3/C1 → S3 ⊆ Aut C3xC24 | 72 | 6 | (C3xC24).10S3 | 432,121 |
(C3xC24).11S3 = C24.D9 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 432 | | (C3xC24).11S3 | 432,168 |
(C3xC24).12S3 = C72:1S3 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 216 | | (C3xC24).12S3 | 432,172 |
(C3xC24).13S3 = C33:12Q16 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 432 | | (C3xC24).13S3 | 432,500 |
(C3xC24).14S3 = C3xDic36 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 144 | 2 | (C3xC24).14S3 | 432,104 |
(C3xC24).15S3 = C3xD72 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 144 | 2 | (C3xC24).15S3 | 432,108 |
(C3xC24).16S3 = C3xC32:5Q16 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).16S3 | 432,484 |
(C3xC24).17S3 = C24:D9 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 216 | | (C3xC24).17S3 | 432,171 |
(C3xC24).18S3 = C3xC72:C2 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 144 | 2 | (C3xC24).18S3 | 432,107 |
(C3xC24).19S3 = C32xDic12 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).19S3 | 432,468 |
(C3xC24).20S3 = C3xC9:C16 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 144 | 2 | (C3xC24).20S3 | 432,28 |
(C3xC24).21S3 = C72.S3 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 432 | | (C3xC24).21S3 | 432,32 |
(C3xC24).22S3 = D9xC24 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 144 | 2 | (C3xC24).22S3 | 432,105 |
(C3xC24).23S3 = C8xC9:S3 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 216 | | (C3xC24).23S3 | 432,169 |
(C3xC24).24S3 = C72:S3 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 216 | | (C3xC24).24S3 | 432,170 |
(C3xC24).25S3 = C3xC24.S3 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).25S3 | 432,230 |
(C3xC24).26S3 = C33:7C16 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 432 | | (C3xC24).26S3 | 432,231 |
(C3xC24).27S3 = C3xC8:D9 | φ: S3/C3 → C2 ⊆ Aut C3xC24 | 144 | 2 | (C3xC24).27S3 | 432,106 |
(C3xC24).28S3 = C32xC3:C16 | central extension (φ=1) | 144 | | (C3xC24).28S3 | 432,229 |