extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C24)⋊1S3 = He3⋊4D8 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 72 | 6+ | (C3xC24):1S3 | 432,118 |
(C3×C24)⋊2S3 = He3⋊5D8 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24):2S3 | 432,176 |
(C3×C24)⋊3S3 = He3⋊6SD16 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24):3S3 | 432,117 |
(C3×C24)⋊4S3 = He3⋊7SD16 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24):4S3 | 432,175 |
(C3×C24)⋊5S3 = C8×C32⋊C6 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24):5S3 | 432,115 |
(C3×C24)⋊6S3 = C8×He3⋊C2 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 72 | 3 | (C3xC24):6S3 | 432,173 |
(C3×C24)⋊7S3 = He3⋊5M4(2) | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24):7S3 | 432,116 |
(C3×C24)⋊8S3 = He3⋊6M4(2) | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24):8S3 | 432,174 |
(C3×C24)⋊9S3 = C33⋊12D8 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24):9S3 | 432,499 |
(C3×C24)⋊10S3 = C3×C32⋊5D8 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):10S3 | 432,483 |
(C3×C24)⋊11S3 = C33⋊21SD16 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24):11S3 | 432,498 |
(C3×C24)⋊12S3 = C3×C24⋊2S3 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):12S3 | 432,482 |
(C3×C24)⋊13S3 = C32×D24 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):13S3 | 432,467 |
(C3×C24)⋊14S3 = C3⋊S3×C24 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):14S3 | 432,480 |
(C3×C24)⋊15S3 = C8×C33⋊C2 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24):15S3 | 432,496 |
(C3×C24)⋊16S3 = C33⋊15M4(2) | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24):16S3 | 432,497 |
(C3×C24)⋊17S3 = C3×C24⋊S3 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):17S3 | 432,481 |
(C3×C24)⋊18S3 = C32×C24⋊C2 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):18S3 | 432,466 |
(C3×C24)⋊19S3 = C32×C8⋊S3 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):19S3 | 432,465 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C24).1S3 = He3⋊4Q16 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 144 | 6- | (C3xC24).1S3 | 432,114 |
(C3×C24).2S3 = C72.C6 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 144 | 6- | (C3xC24).2S3 | 432,119 |
(C3×C24).3S3 = D72⋊C3 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 72 | 6+ | (C3xC24).3S3 | 432,123 |
(C3×C24).4S3 = He3⋊5Q16 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 144 | 6 | (C3xC24).4S3 | 432,177 |
(C3×C24).5S3 = C72⋊2C6 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24).5S3 | 432,122 |
(C3×C24).6S3 = He3⋊3C16 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 144 | 6 | (C3xC24).6S3 | 432,30 |
(C3×C24).7S3 = C9⋊C48 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 144 | 6 | (C3xC24).7S3 | 432,31 |
(C3×C24).8S3 = He3⋊4C16 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 144 | 3 | (C3xC24).8S3 | 432,33 |
(C3×C24).9S3 = C8×C9⋊C6 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24).9S3 | 432,120 |
(C3×C24).10S3 = C72⋊C6 | φ: S3/C1 → S3 ⊆ Aut C3×C24 | 72 | 6 | (C3xC24).10S3 | 432,121 |
(C3×C24).11S3 = C24.D9 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 432 | | (C3xC24).11S3 | 432,168 |
(C3×C24).12S3 = C72⋊1S3 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24).12S3 | 432,172 |
(C3×C24).13S3 = C33⋊12Q16 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 432 | | (C3xC24).13S3 | 432,500 |
(C3×C24).14S3 = C3×Dic36 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | 2 | (C3xC24).14S3 | 432,104 |
(C3×C24).15S3 = C3×D72 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | 2 | (C3xC24).15S3 | 432,108 |
(C3×C24).16S3 = C3×C32⋊5Q16 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).16S3 | 432,484 |
(C3×C24).17S3 = C24⋊D9 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24).17S3 | 432,171 |
(C3×C24).18S3 = C3×C72⋊C2 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | 2 | (C3xC24).18S3 | 432,107 |
(C3×C24).19S3 = C32×Dic12 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).19S3 | 432,468 |
(C3×C24).20S3 = C3×C9⋊C16 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | 2 | (C3xC24).20S3 | 432,28 |
(C3×C24).21S3 = C72.S3 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 432 | | (C3xC24).21S3 | 432,32 |
(C3×C24).22S3 = D9×C24 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | 2 | (C3xC24).22S3 | 432,105 |
(C3×C24).23S3 = C8×C9⋊S3 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24).23S3 | 432,169 |
(C3×C24).24S3 = C72⋊S3 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 216 | | (C3xC24).24S3 | 432,170 |
(C3×C24).25S3 = C3×C24.S3 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).25S3 | 432,230 |
(C3×C24).26S3 = C33⋊7C16 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 432 | | (C3xC24).26S3 | 432,231 |
(C3×C24).27S3 = C3×C8⋊D9 | φ: S3/C3 → C2 ⊆ Aut C3×C24 | 144 | 2 | (C3xC24).27S3 | 432,106 |
(C3×C24).28S3 = C32×C3⋊C16 | central extension (φ=1) | 144 | | (C3xC24).28S3 | 432,229 |