extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3xC2xC6) = C3xS3xDic6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | 4 | C6.1(S3xC2xC6) | 432,642 |
C6.2(S3xC2xC6) = C3xD12:5S3 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | 4 | C6.2(S3xC2xC6) | 432,643 |
C6.3(S3xC2xC6) = C3xD12:S3 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | 4 | C6.3(S3xC2xC6) | 432,644 |
C6.4(S3xC2xC6) = C3xDic3.D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | 4 | C6.4(S3xC2xC6) | 432,645 |
C6.5(S3xC2xC6) = C3xD6.D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | 4 | C6.5(S3xC2xC6) | 432,646 |
C6.6(S3xC2xC6) = C3xD6.6D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | 4 | C6.6(S3xC2xC6) | 432,647 |
C6.7(S3xC2xC6) = S32xC12 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | 4 | C6.7(S3xC2xC6) | 432,648 |
C6.8(S3xC2xC6) = C3xS3xD12 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | 4 | C6.8(S3xC2xC6) | 432,649 |
C6.9(S3xC2xC6) = C3xD6:D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | 4 | C6.9(S3xC2xC6) | 432,650 |
C6.10(S3xC2xC6) = S3xC6xDic3 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | | C6.10(S3xC2xC6) | 432,651 |
C6.11(S3xC2xC6) = C3xD6.3D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 24 | 4 | C6.11(S3xC2xC6) | 432,652 |
C6.12(S3xC2xC6) = C3xD6.4D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 24 | 4 | C6.12(S3xC2xC6) | 432,653 |
C6.13(S3xC2xC6) = C6xC6.D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | | C6.13(S3xC2xC6) | 432,654 |
C6.14(S3xC2xC6) = C6xD6:S3 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | | C6.14(S3xC2xC6) | 432,655 |
C6.15(S3xC2xC6) = C6xC3:D12 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | | C6.15(S3xC2xC6) | 432,656 |
C6.16(S3xC2xC6) = C6xC32:2Q8 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 48 | | C6.16(S3xC2xC6) | 432,657 |
C6.17(S3xC2xC6) = C3xS3xC3:D4 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 24 | 4 | C6.17(S3xC2xC6) | 432,658 |
C6.18(S3xC2xC6) = C3xDic3:D6 | φ: S3xC2xC6/S3xC6 → C2 ⊆ Aut C6 | 24 | 4 | C6.18(S3xC2xC6) | 432,659 |
C6.19(S3xC2xC6) = C6xDic18 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.19(S3xC2xC6) | 432,340 |
C6.20(S3xC2xC6) = D9xC2xC12 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.20(S3xC2xC6) | 432,342 |
C6.21(S3xC2xC6) = C6xD36 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.21(S3xC2xC6) | 432,343 |
C6.22(S3xC2xC6) = C3xD36:5C2 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | 2 | C6.22(S3xC2xC6) | 432,344 |
C6.23(S3xC2xC6) = C2xHe3:3Q8 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.23(S3xC2xC6) | 432,348 |
C6.24(S3xC2xC6) = C2xC4xC32:C6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | | C6.24(S3xC2xC6) | 432,349 |
C6.25(S3xC2xC6) = C2xHe3:4D4 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | | C6.25(S3xC2xC6) | 432,350 |
C6.26(S3xC2xC6) = C62.36D6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | 6 | C6.26(S3xC2xC6) | 432,351 |
C6.27(S3xC2xC6) = C2xC36.C6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.27(S3xC2xC6) | 432,352 |
C6.28(S3xC2xC6) = C2xC4xC9:C6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | | C6.28(S3xC2xC6) | 432,353 |
C6.29(S3xC2xC6) = C2xD36:C3 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | | C6.29(S3xC2xC6) | 432,354 |
C6.30(S3xC2xC6) = D36:6C6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | 6 | C6.30(S3xC2xC6) | 432,355 |
C6.31(S3xC2xC6) = C3xD4xD9 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | 4 | C6.31(S3xC2xC6) | 432,356 |
C6.32(S3xC2xC6) = C3xD4:2D9 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | 4 | C6.32(S3xC2xC6) | 432,357 |
C6.33(S3xC2xC6) = D4xC32:C6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 36 | 12+ | C6.33(S3xC2xC6) | 432,360 |
C6.34(S3xC2xC6) = C62.13D6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | 12- | C6.34(S3xC2xC6) | 432,361 |
C6.35(S3xC2xC6) = D4xC9:C6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 36 | 12+ | C6.35(S3xC2xC6) | 432,362 |
C6.36(S3xC2xC6) = Dic18:2C6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | 12- | C6.36(S3xC2xC6) | 432,363 |
C6.37(S3xC2xC6) = C3xQ8xD9 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | 4 | C6.37(S3xC2xC6) | 432,364 |
C6.38(S3xC2xC6) = C3xQ8:3D9 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | 4 | C6.38(S3xC2xC6) | 432,365 |
C6.39(S3xC2xC6) = Q8xC32:C6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | 12- | C6.39(S3xC2xC6) | 432,368 |
C6.40(S3xC2xC6) = (Q8xHe3):C2 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | 12+ | C6.40(S3xC2xC6) | 432,369 |
C6.41(S3xC2xC6) = Q8xC9:C6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | 12- | C6.41(S3xC2xC6) | 432,370 |
C6.42(S3xC2xC6) = D36:3C6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | 12+ | C6.42(S3xC2xC6) | 432,371 |
C6.43(S3xC2xC6) = C2xC6xDic9 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.43(S3xC2xC6) | 432,372 |
C6.44(S3xC2xC6) = C6xC9:D4 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | | C6.44(S3xC2xC6) | 432,374 |
C6.45(S3xC2xC6) = C22xC32:C12 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.45(S3xC2xC6) | 432,376 |
C6.46(S3xC2xC6) = C2xHe3:6D4 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | | C6.46(S3xC2xC6) | 432,377 |
C6.47(S3xC2xC6) = C22xC9:C12 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.47(S3xC2xC6) | 432,378 |
C6.48(S3xC2xC6) = C2xDic9:C6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | | C6.48(S3xC2xC6) | 432,379 |
C6.49(S3xC2xC6) = D9xC22xC6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.49(S3xC2xC6) | 432,556 |
C6.50(S3xC2xC6) = C23xC32:C6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | | C6.50(S3xC2xC6) | 432,558 |
C6.51(S3xC2xC6) = C23xC9:C6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | | C6.51(S3xC2xC6) | 432,559 |
C6.52(S3xC2xC6) = C6xC32:4Q8 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.52(S3xC2xC6) | 432,710 |
C6.53(S3xC2xC6) = C3:S3xC2xC12 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.53(S3xC2xC6) | 432,711 |
C6.54(S3xC2xC6) = C6xC12:S3 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.54(S3xC2xC6) | 432,712 |
C6.55(S3xC2xC6) = C3xC12.59D6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | | C6.55(S3xC2xC6) | 432,713 |
C6.56(S3xC2xC6) = C3xD4xC3:S3 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | | C6.56(S3xC2xC6) | 432,714 |
C6.57(S3xC2xC6) = C3xC12.D6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | | C6.57(S3xC2xC6) | 432,715 |
C6.58(S3xC2xC6) = C3xQ8xC3:S3 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.58(S3xC2xC6) | 432,716 |
C6.59(S3xC2xC6) = C3xC12.26D6 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.59(S3xC2xC6) | 432,717 |
C6.60(S3xC2xC6) = C2xC6xC3:Dic3 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 144 | | C6.60(S3xC2xC6) | 432,718 |
C6.61(S3xC2xC6) = C6xC32:7D4 | φ: S3xC2xC6/C62 → C2 ⊆ Aut C6 | 72 | | C6.61(S3xC2xC6) | 432,719 |
C6.62(S3xC2xC6) = C18xDic6 | central extension (φ=1) | 144 | | C6.62(S3xC2xC6) | 432,341 |
C6.63(S3xC2xC6) = S3xC2xC36 | central extension (φ=1) | 144 | | C6.63(S3xC2xC6) | 432,345 |
C6.64(S3xC2xC6) = C18xD12 | central extension (φ=1) | 144 | | C6.64(S3xC2xC6) | 432,346 |
C6.65(S3xC2xC6) = C9xC4oD12 | central extension (φ=1) | 72 | 2 | C6.65(S3xC2xC6) | 432,347 |
C6.66(S3xC2xC6) = S3xD4xC9 | central extension (φ=1) | 72 | 4 | C6.66(S3xC2xC6) | 432,358 |
C6.67(S3xC2xC6) = C9xD4:2S3 | central extension (φ=1) | 72 | 4 | C6.67(S3xC2xC6) | 432,359 |
C6.68(S3xC2xC6) = S3xQ8xC9 | central extension (φ=1) | 144 | 4 | C6.68(S3xC2xC6) | 432,366 |
C6.69(S3xC2xC6) = C9xQ8:3S3 | central extension (φ=1) | 144 | 4 | C6.69(S3xC2xC6) | 432,367 |
C6.70(S3xC2xC6) = Dic3xC2xC18 | central extension (φ=1) | 144 | | C6.70(S3xC2xC6) | 432,373 |
C6.71(S3xC2xC6) = C18xC3:D4 | central extension (φ=1) | 72 | | C6.71(S3xC2xC6) | 432,375 |
C6.72(S3xC2xC6) = S3xC22xC18 | central extension (φ=1) | 144 | | C6.72(S3xC2xC6) | 432,557 |
C6.73(S3xC2xC6) = C3xC6xDic6 | central extension (φ=1) | 144 | | C6.73(S3xC2xC6) | 432,700 |
C6.74(S3xC2xC6) = S3xC6xC12 | central extension (φ=1) | 144 | | C6.74(S3xC2xC6) | 432,701 |
C6.75(S3xC2xC6) = C3xC6xD12 | central extension (φ=1) | 144 | | C6.75(S3xC2xC6) | 432,702 |
C6.76(S3xC2xC6) = C32xC4oD12 | central extension (φ=1) | 72 | | C6.76(S3xC2xC6) | 432,703 |
C6.77(S3xC2xC6) = S3xD4xC32 | central extension (φ=1) | 72 | | C6.77(S3xC2xC6) | 432,704 |
C6.78(S3xC2xC6) = C32xD4:2S3 | central extension (φ=1) | 72 | | C6.78(S3xC2xC6) | 432,705 |
C6.79(S3xC2xC6) = S3xQ8xC32 | central extension (φ=1) | 144 | | C6.79(S3xC2xC6) | 432,706 |
C6.80(S3xC2xC6) = C32xQ8:3S3 | central extension (φ=1) | 144 | | C6.80(S3xC2xC6) | 432,707 |
C6.81(S3xC2xC6) = Dic3xC62 | central extension (φ=1) | 144 | | C6.81(S3xC2xC6) | 432,708 |
C6.82(S3xC2xC6) = C3xC6xC3:D4 | central extension (φ=1) | 72 | | C6.82(S3xC2xC6) | 432,709 |