| extension | φ:Q→Aut N | d | ρ | Label | ID | 
| C6.1(S3×C2×C6) = C3×S3×Dic6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.1(S3xC2xC6) | 432,642 | 
| C6.2(S3×C2×C6) = C3×D12⋊5S3 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.2(S3xC2xC6) | 432,643 | 
| C6.3(S3×C2×C6) = C3×D12⋊S3 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.3(S3xC2xC6) | 432,644 | 
| C6.4(S3×C2×C6) = C3×Dic3.D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.4(S3xC2xC6) | 432,645 | 
| C6.5(S3×C2×C6) = C3×D6.D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.5(S3xC2xC6) | 432,646 | 
| C6.6(S3×C2×C6) = C3×D6.6D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.6(S3xC2xC6) | 432,647 | 
| C6.7(S3×C2×C6) = S32×C12 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.7(S3xC2xC6) | 432,648 | 
| C6.8(S3×C2×C6) = C3×S3×D12 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.8(S3xC2xC6) | 432,649 | 
| C6.9(S3×C2×C6) = C3×D6⋊D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.9(S3xC2xC6) | 432,650 | 
| C6.10(S3×C2×C6) = S3×C6×Dic3 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 |  | C6.10(S3xC2xC6) | 432,651 | 
| C6.11(S3×C2×C6) = C3×D6.3D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 24 | 4 | C6.11(S3xC2xC6) | 432,652 | 
| C6.12(S3×C2×C6) = C3×D6.4D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 24 | 4 | C6.12(S3xC2xC6) | 432,653 | 
| C6.13(S3×C2×C6) = C6×C6.D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 |  | C6.13(S3xC2xC6) | 432,654 | 
| C6.14(S3×C2×C6) = C6×D6⋊S3 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 |  | C6.14(S3xC2xC6) | 432,655 | 
| C6.15(S3×C2×C6) = C6×C3⋊D12 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 |  | C6.15(S3xC2xC6) | 432,656 | 
| C6.16(S3×C2×C6) = C6×C32⋊2Q8 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 48 |  | C6.16(S3xC2xC6) | 432,657 | 
| C6.17(S3×C2×C6) = C3×S3×C3⋊D4 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 24 | 4 | C6.17(S3xC2xC6) | 432,658 | 
| C6.18(S3×C2×C6) = C3×Dic3⋊D6 | φ: S3×C2×C6/S3×C6 → C2 ⊆ Aut C6 | 24 | 4 | C6.18(S3xC2xC6) | 432,659 | 
| C6.19(S3×C2×C6) = C6×Dic18 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.19(S3xC2xC6) | 432,340 | 
| C6.20(S3×C2×C6) = D9×C2×C12 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.20(S3xC2xC6) | 432,342 | 
| C6.21(S3×C2×C6) = C6×D36 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.21(S3xC2xC6) | 432,343 | 
| C6.22(S3×C2×C6) = C3×D36⋊5C2 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 | 2 | C6.22(S3xC2xC6) | 432,344 | 
| C6.23(S3×C2×C6) = C2×He3⋊3Q8 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.23(S3xC2xC6) | 432,348 | 
| C6.24(S3×C2×C6) = C2×C4×C32⋊C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 |  | C6.24(S3xC2xC6) | 432,349 | 
| C6.25(S3×C2×C6) = C2×He3⋊4D4 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 |  | C6.25(S3xC2xC6) | 432,350 | 
| C6.26(S3×C2×C6) = C62.36D6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 | 6 | C6.26(S3xC2xC6) | 432,351 | 
| C6.27(S3×C2×C6) = C2×C36.C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.27(S3xC2xC6) | 432,352 | 
| C6.28(S3×C2×C6) = C2×C4×C9⋊C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 |  | C6.28(S3xC2xC6) | 432,353 | 
| C6.29(S3×C2×C6) = C2×D36⋊C3 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 |  | C6.29(S3xC2xC6) | 432,354 | 
| C6.30(S3×C2×C6) = D36⋊6C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 | 6 | C6.30(S3xC2xC6) | 432,355 | 
| C6.31(S3×C2×C6) = C3×D4×D9 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 | 4 | C6.31(S3xC2xC6) | 432,356 | 
| C6.32(S3×C2×C6) = C3×D4⋊2D9 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 | 4 | C6.32(S3xC2xC6) | 432,357 | 
| C6.33(S3×C2×C6) = D4×C32⋊C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 36 | 12+ | C6.33(S3xC2xC6) | 432,360 | 
| C6.34(S3×C2×C6) = C62.13D6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 | 12- | C6.34(S3xC2xC6) | 432,361 | 
| C6.35(S3×C2×C6) = D4×C9⋊C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 36 | 12+ | C6.35(S3xC2xC6) | 432,362 | 
| C6.36(S3×C2×C6) = Dic18⋊2C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 | 12- | C6.36(S3xC2xC6) | 432,363 | 
| C6.37(S3×C2×C6) = C3×Q8×D9 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 | 4 | C6.37(S3xC2xC6) | 432,364 | 
| C6.38(S3×C2×C6) = C3×Q8⋊3D9 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 | 4 | C6.38(S3xC2xC6) | 432,365 | 
| C6.39(S3×C2×C6) = Q8×C32⋊C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 | 12- | C6.39(S3xC2xC6) | 432,368 | 
| C6.40(S3×C2×C6) = (Q8×He3)⋊C2 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 | 12+ | C6.40(S3xC2xC6) | 432,369 | 
| C6.41(S3×C2×C6) = Q8×C9⋊C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 | 12- | C6.41(S3xC2xC6) | 432,370 | 
| C6.42(S3×C2×C6) = D36⋊3C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 | 12+ | C6.42(S3xC2xC6) | 432,371 | 
| C6.43(S3×C2×C6) = C2×C6×Dic9 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.43(S3xC2xC6) | 432,372 | 
| C6.44(S3×C2×C6) = C6×C9⋊D4 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 |  | C6.44(S3xC2xC6) | 432,374 | 
| C6.45(S3×C2×C6) = C22×C32⋊C12 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.45(S3xC2xC6) | 432,376 | 
| C6.46(S3×C2×C6) = C2×He3⋊6D4 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 |  | C6.46(S3xC2xC6) | 432,377 | 
| C6.47(S3×C2×C6) = C22×C9⋊C12 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.47(S3xC2xC6) | 432,378 | 
| C6.48(S3×C2×C6) = C2×Dic9⋊C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 |  | C6.48(S3xC2xC6) | 432,379 | 
| C6.49(S3×C2×C6) = D9×C22×C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.49(S3xC2xC6) | 432,556 | 
| C6.50(S3×C2×C6) = C23×C32⋊C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 |  | C6.50(S3xC2xC6) | 432,558 | 
| C6.51(S3×C2×C6) = C23×C9⋊C6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 |  | C6.51(S3xC2xC6) | 432,559 | 
| C6.52(S3×C2×C6) = C6×C32⋊4Q8 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.52(S3xC2xC6) | 432,710 | 
| C6.53(S3×C2×C6) = C3⋊S3×C2×C12 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.53(S3xC2xC6) | 432,711 | 
| C6.54(S3×C2×C6) = C6×C12⋊S3 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.54(S3xC2xC6) | 432,712 | 
| C6.55(S3×C2×C6) = C3×C12.59D6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 |  | C6.55(S3xC2xC6) | 432,713 | 
| C6.56(S3×C2×C6) = C3×D4×C3⋊S3 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 |  | C6.56(S3xC2xC6) | 432,714 | 
| C6.57(S3×C2×C6) = C3×C12.D6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 |  | C6.57(S3xC2xC6) | 432,715 | 
| C6.58(S3×C2×C6) = C3×Q8×C3⋊S3 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.58(S3xC2xC6) | 432,716 | 
| C6.59(S3×C2×C6) = C3×C12.26D6 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.59(S3xC2xC6) | 432,717 | 
| C6.60(S3×C2×C6) = C2×C6×C3⋊Dic3 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 144 |  | C6.60(S3xC2xC6) | 432,718 | 
| C6.61(S3×C2×C6) = C6×C32⋊7D4 | φ: S3×C2×C6/C62 → C2 ⊆ Aut C6 | 72 |  | C6.61(S3xC2xC6) | 432,719 | 
| C6.62(S3×C2×C6) = C18×Dic6 | central extension (φ=1) | 144 |  | C6.62(S3xC2xC6) | 432,341 | 
| C6.63(S3×C2×C6) = S3×C2×C36 | central extension (φ=1) | 144 |  | C6.63(S3xC2xC6) | 432,345 | 
| C6.64(S3×C2×C6) = C18×D12 | central extension (φ=1) | 144 |  | C6.64(S3xC2xC6) | 432,346 | 
| C6.65(S3×C2×C6) = C9×C4○D12 | central extension (φ=1) | 72 | 2 | C6.65(S3xC2xC6) | 432,347 | 
| C6.66(S3×C2×C6) = S3×D4×C9 | central extension (φ=1) | 72 | 4 | C6.66(S3xC2xC6) | 432,358 | 
| C6.67(S3×C2×C6) = C9×D4⋊2S3 | central extension (φ=1) | 72 | 4 | C6.67(S3xC2xC6) | 432,359 | 
| C6.68(S3×C2×C6) = S3×Q8×C9 | central extension (φ=1) | 144 | 4 | C6.68(S3xC2xC6) | 432,366 | 
| C6.69(S3×C2×C6) = C9×Q8⋊3S3 | central extension (φ=1) | 144 | 4 | C6.69(S3xC2xC6) | 432,367 | 
| C6.70(S3×C2×C6) = Dic3×C2×C18 | central extension (φ=1) | 144 |  | C6.70(S3xC2xC6) | 432,373 | 
| C6.71(S3×C2×C6) = C18×C3⋊D4 | central extension (φ=1) | 72 |  | C6.71(S3xC2xC6) | 432,375 | 
| C6.72(S3×C2×C6) = S3×C22×C18 | central extension (φ=1) | 144 |  | C6.72(S3xC2xC6) | 432,557 | 
| C6.73(S3×C2×C6) = C3×C6×Dic6 | central extension (φ=1) | 144 |  | C6.73(S3xC2xC6) | 432,700 | 
| C6.74(S3×C2×C6) = S3×C6×C12 | central extension (φ=1) | 144 |  | C6.74(S3xC2xC6) | 432,701 | 
| C6.75(S3×C2×C6) = C3×C6×D12 | central extension (φ=1) | 144 |  | C6.75(S3xC2xC6) | 432,702 | 
| C6.76(S3×C2×C6) = C32×C4○D12 | central extension (φ=1) | 72 |  | C6.76(S3xC2xC6) | 432,703 | 
| C6.77(S3×C2×C6) = S3×D4×C32 | central extension (φ=1) | 72 |  | C6.77(S3xC2xC6) | 432,704 | 
| C6.78(S3×C2×C6) = C32×D4⋊2S3 | central extension (φ=1) | 72 |  | C6.78(S3xC2xC6) | 432,705 | 
| C6.79(S3×C2×C6) = S3×Q8×C32 | central extension (φ=1) | 144 |  | C6.79(S3xC2xC6) | 432,706 | 
| C6.80(S3×C2×C6) = C32×Q8⋊3S3 | central extension (φ=1) | 144 |  | C6.80(S3xC2xC6) | 432,707 | 
| C6.81(S3×C2×C6) = Dic3×C62 | central extension (φ=1) | 144 |  | C6.81(S3xC2xC6) | 432,708 | 
| C6.82(S3×C2×C6) = C3×C6×C3⋊D4 | central extension (φ=1) | 72 |  | C6.82(S3xC2xC6) | 432,709 |