extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3×D12) = C3×Dic36 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | 2 | C6.1(C3xD12) | 432,104 |
C6.2(C3×D12) = C3×C72⋊C2 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | 2 | C6.2(C3xD12) | 432,107 |
C6.3(C3×D12) = C3×D72 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | 2 | C6.3(C3xD12) | 432,108 |
C6.4(C3×D12) = He3⋊4Q16 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | 6- | C6.4(C3xD12) | 432,114 |
C6.5(C3×D12) = He3⋊6SD16 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 72 | 6 | C6.5(C3xD12) | 432,117 |
C6.6(C3×D12) = He3⋊4D8 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 72 | 6+ | C6.6(C3xD12) | 432,118 |
C6.7(C3×D12) = C72.C6 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | 6- | C6.7(C3xD12) | 432,119 |
C6.8(C3×D12) = C72⋊2C6 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 72 | 6 | C6.8(C3xD12) | 432,122 |
C6.9(C3×D12) = D72⋊C3 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 72 | 6+ | C6.9(C3xD12) | 432,123 |
C6.10(C3×D12) = C3×C4⋊Dic9 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.10(C3xD12) | 432,130 |
C6.11(C3×D12) = C3×D18⋊C4 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.11(C3xD12) | 432,134 |
C6.12(C3×D12) = C62.20D6 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.12(C3xD12) | 432,140 |
C6.13(C3×D12) = C62.21D6 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 72 | | C6.13(C3xD12) | 432,141 |
C6.14(C3×D12) = C36⋊C12 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.14(C3xD12) | 432,146 |
C6.15(C3×D12) = D18⋊C12 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 72 | | C6.15(C3xD12) | 432,147 |
C6.16(C3×D12) = C6×D36 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.16(C3xD12) | 432,343 |
C6.17(C3×D12) = C2×He3⋊4D4 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 72 | | C6.17(C3xD12) | 432,350 |
C6.18(C3×D12) = C2×D36⋊C3 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 72 | | C6.18(C3xD12) | 432,354 |
C6.19(C3×D12) = C3×C24⋊2S3 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.19(C3xD12) | 432,482 |
C6.20(C3×D12) = C3×C32⋊5D8 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.20(C3xD12) | 432,483 |
C6.21(C3×D12) = C3×C32⋊5Q16 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.21(C3xD12) | 432,484 |
C6.22(C3×D12) = C3×C12⋊Dic3 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.22(C3xD12) | 432,489 |
C6.23(C3×D12) = C3×C6.11D12 | φ: C3×D12/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.23(C3xD12) | 432,490 |
C6.24(C3×D12) = C3×C3⋊D24 | φ: C3×D12/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.24(C3xD12) | 432,419 |
C6.25(C3×D12) = C3×D12.S3 | φ: C3×D12/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.25(C3xD12) | 432,421 |
C6.26(C3×D12) = C3×C32⋊5SD16 | φ: C3×D12/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.26(C3xD12) | 432,422 |
C6.27(C3×D12) = C3×C32⋊3Q16 | φ: C3×D12/S3×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.27(C3xD12) | 432,424 |
C6.28(C3×D12) = C3×D6⋊Dic3 | φ: C3×D12/S3×C6 → C2 ⊆ Aut C6 | 48 | | C6.28(C3xD12) | 432,426 |
C6.29(C3×D12) = C3×C6.D12 | φ: C3×D12/S3×C6 → C2 ⊆ Aut C6 | 48 | | C6.29(C3xD12) | 432,427 |
C6.30(C3×D12) = C3×Dic3⋊Dic3 | φ: C3×D12/S3×C6 → C2 ⊆ Aut C6 | 48 | | C6.30(C3xD12) | 432,428 |
C6.31(C3×D12) = C9×C24⋊C2 | central extension (φ=1) | 144 | 2 | C6.31(C3xD12) | 432,111 |
C6.32(C3×D12) = C9×D24 | central extension (φ=1) | 144 | 2 | C6.32(C3xD12) | 432,112 |
C6.33(C3×D12) = C9×Dic12 | central extension (φ=1) | 144 | 2 | C6.33(C3xD12) | 432,113 |
C6.34(C3×D12) = C9×C4⋊Dic3 | central extension (φ=1) | 144 | | C6.34(C3xD12) | 432,133 |
C6.35(C3×D12) = C9×D6⋊C4 | central extension (φ=1) | 144 | | C6.35(C3xD12) | 432,135 |
C6.36(C3×D12) = C18×D12 | central extension (φ=1) | 144 | | C6.36(C3xD12) | 432,346 |
C6.37(C3×D12) = C32×C24⋊C2 | central extension (φ=1) | 144 | | C6.37(C3xD12) | 432,466 |
C6.38(C3×D12) = C32×D24 | central extension (φ=1) | 144 | | C6.38(C3xD12) | 432,467 |
C6.39(C3×D12) = C32×Dic12 | central extension (φ=1) | 144 | | C6.39(C3xD12) | 432,468 |
C6.40(C3×D12) = C32×C4⋊Dic3 | central extension (φ=1) | 144 | | C6.40(C3xD12) | 432,473 |
C6.41(C3×D12) = C32×D6⋊C4 | central extension (φ=1) | 144 | | C6.41(C3xD12) | 432,474 |