extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic7).1D4 = C23.5D28 | φ: D4/C1 → D4 ⊆ Out C2×Dic7 | 112 | 8- | (C2xDic7).1D4 | 448,276 |
(C2×Dic7).2D4 = D4.9D28 | φ: D4/C1 → D4 ⊆ Out C2×Dic7 | 112 | 4- | (C2xDic7).2D4 | 448,360 |
(C2×Dic7).3D4 = D4.10D28 | φ: D4/C1 → D4 ⊆ Out C2×Dic7 | 112 | 4 | (C2xDic7).3D4 | 448,361 |
(C2×Dic7).4D4 = C22⋊C4⋊D14 | φ: D4/C1 → D4 ⊆ Out C2×Dic7 | 112 | 4 | (C2xDic7).4D4 | 448,587 |
(C2×Dic7).5D4 = D28.38D4 | φ: D4/C1 → D4 ⊆ Out C2×Dic7 | 112 | 8- | (C2xDic7).5D4 | 448,735 |
(C2×Dic7).6D4 = D28.40D4 | φ: D4/C1 → D4 ⊆ Out C2×Dic7 | 112 | 8- | (C2xDic7).6D4 | 448,739 |
(C2×Dic7).7D4 = (C2×Dic7)⋊Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).7D4 | 448,190 |
(C2×Dic7).8D4 = C2.(C28⋊Q8) | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).8D4 | 448,191 |
(C2×Dic7).9D4 = (C2×Dic7).Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).9D4 | 448,192 |
(C2×Dic7).10D4 = (C2×C4).Dic14 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).10D4 | 448,194 |
(C2×Dic7).11D4 = C14.(C4⋊Q8) | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).11D4 | 448,195 |
(C2×Dic7).12D4 = (C2×C4).20D28 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).12D4 | 448,207 |
(C2×Dic7).13D4 = (C22×D7).9D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).13D4 | 448,209 |
(C2×Dic7).14D4 = (C22×D7).Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).14D4 | 448,210 |
(C2×Dic7).15D4 = C4⋊C4.D14 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).15D4 | 448,298 |
(C2×Dic7).16D4 = C28⋊Q8⋊C2 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).16D4 | 448,299 |
(C2×Dic7).17D4 = Dic14.D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).17D4 | 448,301 |
(C2×Dic7).18D4 = D4⋊D28 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).18D4 | 448,307 |
(C2×Dic7).19D4 = D14.D8 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).19D4 | 448,308 |
(C2×Dic7).20D4 = D4.6D28 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).20D4 | 448,310 |
(C2×Dic7).21D4 = D14.SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).21D4 | 448,311 |
(C2×Dic7).22D4 = C7⋊C8⋊1D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).22D4 | 448,314 |
(C2×Dic7).23D4 = C7⋊C8⋊D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).23D4 | 448,316 |
(C2×Dic7).24D4 = D28⋊3D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).24D4 | 448,320 |
(C2×Dic7).25D4 = D28.D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).25D4 | 448,321 |
(C2×Dic7).26D4 = Q8⋊C4⋊D7 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).26D4 | 448,329 |
(C2×Dic7).27D4 = C56⋊C4.C2 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).27D4 | 448,331 |
(C2×Dic7).28D4 = Dic14.11D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).28D4 | 448,332 |
(C2×Dic7).29D4 = D14.1SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).29D4 | 448,339 |
(C2×Dic7).30D4 = Q8⋊2D28 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).30D4 | 448,340 |
(C2×Dic7).31D4 = D14⋊4Q16 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).31D4 | 448,342 |
(C2×Dic7).32D4 = D14.Q16 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).32D4 | 448,343 |
(C2×Dic7).33D4 = C7⋊(C8⋊D4) | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).33D4 | 448,346 |
(C2×Dic7).34D4 = C7⋊C8.D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).34D4 | 448,350 |
(C2×Dic7).35D4 = Dic7⋊SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).35D4 | 448,352 |
(C2×Dic7).36D4 = D28.12D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).36D4 | 448,353 |
(C2×Dic7).37D4 = C42⋊D14 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 112 | 4 | (C2xDic7).37D4 | 448,355 |
(C2×Dic7).38D4 = C56⋊3Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).38D4 | 448,390 |
(C2×Dic7).39D4 = Dic14.Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).39D4 | 448,391 |
(C2×Dic7).40D4 = D14.2SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).40D4 | 448,396 |
(C2×Dic7).41D4 = D14.4SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).41D4 | 448,397 |
(C2×Dic7).42D4 = C56⋊7D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).42D4 | 448,399 |
(C2×Dic7).43D4 = C8.2D28 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).43D4 | 448,402 |
(C2×Dic7).44D4 = D28⋊Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).44D4 | 448,404 |
(C2×Dic7).45D4 = D28.Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).45D4 | 448,405 |
(C2×Dic7).46D4 = C56⋊4Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).46D4 | 448,410 |
(C2×Dic7).47D4 = Dic14.2Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).47D4 | 448,411 |
(C2×Dic7).48D4 = D14.5D8 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).48D4 | 448,416 |
(C2×Dic7).49D4 = D14.2Q16 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).49D4 | 448,418 |
(C2×Dic7).50D4 = C8⋊3D28 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).50D4 | 448,420 |
(C2×Dic7).51D4 = D28⋊2Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).51D4 | 448,424 |
(C2×Dic7).52D4 = D28.2Q8 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).52D4 | 448,425 |
(C2×Dic7).53D4 = C23⋊Dic14 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).53D4 | 448,481 |
(C2×Dic7).54D4 = C24.6D14 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).54D4 | 448,482 |
(C2×Dic7).55D4 = C24.7D14 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).55D4 | 448,483 |
(C2×Dic7).56D4 = C24.9D14 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).56D4 | 448,486 |
(C2×Dic7).57D4 = C23.16D28 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).57D4 | 448,495 |
(C2×Dic7).58D4 = (C2×C4)⋊Dic14 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).58D4 | 448,513 |
(C2×Dic7).59D4 = (C2×C28).287D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).59D4 | 448,514 |
(C2×Dic7).60D4 = (C2×C28).54D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).60D4 | 448,518 |
(C2×Dic7).61D4 = (C2×C28).289D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).61D4 | 448,526 |
(C2×Dic7).62D4 = (C2×C4).45D28 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).62D4 | 448,528 |
(C2×Dic7).63D4 = (C2×D8).D7 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).63D4 | 448,687 |
(C2×Dic7).64D4 = C56⋊11D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).64D4 | 448,688 |
(C2×Dic7).65D4 = D28⋊D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).65D4 | 448,690 |
(C2×Dic7).66D4 = C56⋊12D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).66D4 | 448,693 |
(C2×Dic7).67D4 = Dic7⋊5SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).67D4 | 448,697 |
(C2×Dic7).68D4 = (C7×D4).D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).68D4 | 448,699 |
(C2×Dic7).69D4 = (C7×Q8).D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).69D4 | 448,700 |
(C2×Dic7).70D4 = C56.31D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).70D4 | 448,701 |
(C2×Dic7).71D4 = D14⋊6SD16 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).71D4 | 448,703 |
(C2×Dic7).72D4 = Dic14⋊7D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).72D4 | 448,704 |
(C2×Dic7).73D4 = C56⋊8D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).73D4 | 448,708 |
(C2×Dic7).74D4 = C56⋊9D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).74D4 | 448,710 |
(C2×Dic7).75D4 = (C2×Q16)⋊D7 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).75D4 | 448,719 |
(C2×Dic7).76D4 = D14⋊5Q16 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).76D4 | 448,720 |
(C2×Dic7).77D4 = C56.36D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).77D4 | 448,723 |
(C2×Dic7).78D4 = C56.37D4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).78D4 | 448,724 |
(C2×Dic7).79D4 = C14.792- 1+4 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).79D4 | 448,1101 |
(C2×Dic7).80D4 = D8⋊10D14 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 112 | 4 | (C2xDic7).80D4 | 448,1221 |
(C2×Dic7).81D4 = D7×C8⋊C22 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 56 | 8+ | (C2xDic7).81D4 | 448,1225 |
(C2×Dic7).82D4 = D7×C8.C22 | φ: D4/C2 → C22 ⊆ Out C2×Dic7 | 112 | 8- | (C2xDic7).82D4 | 448,1229 |
(C2×Dic7).83D4 = C7⋊(C42⋊8C4) | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).83D4 | 448,184 |
(C2×Dic7).84D4 = D14⋊C4⋊5C4 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).84D4 | 448,203 |
(C2×Dic7).85D4 = C2.(C4×D28) | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).85D4 | 448,204 |
(C2×Dic7).86D4 = Dic7.SD16 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).86D4 | 448,294 |
(C2×Dic7).87D4 = (C8×Dic7)⋊C2 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).87D4 | 448,302 |
(C2×Dic7).88D4 = D7×D4⋊C4 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).88D4 | 448,303 |
(C2×Dic7).89D4 = D14⋊D8 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).89D4 | 448,309 |
(C2×Dic7).90D4 = D14⋊SD16 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).90D4 | 448,312 |
(C2×Dic7).91D4 = Dic7.1Q16 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).91D4 | 448,326 |
(C2×Dic7).92D4 = Q8⋊Dic7⋊C2 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).92D4 | 448,334 |
(C2×Dic7).93D4 = D7×Q8⋊C4 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).93D4 | 448,335 |
(C2×Dic7).94D4 = D14⋊2SD16 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).94D4 | 448,341 |
(C2×Dic7).95D4 = D14⋊Q16 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).95D4 | 448,347 |
(C2×Dic7).96D4 = C56⋊5Q8 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).96D4 | 448,389 |
(C2×Dic7).97D4 = C56.8Q8 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).97D4 | 448,392 |
(C2×Dic7).98D4 = D7×C4.Q8 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).98D4 | 448,393 |
(C2×Dic7).99D4 = C8⋊8D28 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).99D4 | 448,398 |
(C2×Dic7).100D4 = C56⋊2Q8 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).100D4 | 448,408 |
(C2×Dic7).101D4 = C56.4Q8 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).101D4 | 448,412 |
(C2×Dic7).102D4 = D7×C2.D8 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).102D4 | 448,413 |
(C2×Dic7).103D4 = C8⋊7D28 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).103D4 | 448,417 |
(C2×Dic7).104D4 = D14⋊2Q16 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).104D4 | 448,421 |
(C2×Dic7).105D4 = C24.3D14 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).105D4 | 448,478 |
(C2×Dic7).106D4 = C24.8D14 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).106D4 | 448,485 |
(C2×Dic7).107D4 = C28⋊(C4⋊C4) | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).107D4 | 448,507 |
(C2×Dic7).108D4 = (C4×Dic7)⋊8C4 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).108D4 | 448,510 |
(C2×Dic7).109D4 = C4⋊(C4⋊Dic7) | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).109D4 | 448,519 |
(C2×Dic7).110D4 = C56⋊5D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).110D4 | 448,685 |
(C2×Dic7).111D4 = C56.22D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).111D4 | 448,689 |
(C2×Dic7).112D4 = C56⋊6D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).112D4 | 448,691 |
(C2×Dic7).113D4 = C56.43D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).113D4 | 448,702 |
(C2×Dic7).114D4 = C56⋊14D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).114D4 | 448,705 |
(C2×Dic7).115D4 = C56⋊15D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).115D4 | 448,709 |
(C2×Dic7).116D4 = C56.26D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).116D4 | 448,715 |
(C2×Dic7).117D4 = D14⋊3Q16 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).117D4 | 448,722 |
(C2×Dic7).118D4 = C56.28D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).118D4 | 448,725 |
(C2×Dic7).119D4 = C2×Dic7.D4 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).119D4 | 448,944 |
(C2×Dic7).120D4 = C2×C28⋊Q8 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).120D4 | 448,950 |
(C2×Dic7).121D4 = C2×D7×D8 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).121D4 | 448,1207 |
(C2×Dic7).122D4 = C2×D7×SD16 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).122D4 | 448,1211 |
(C2×Dic7).123D4 = C2×D7×Q16 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).123D4 | 448,1216 |
(C2×Dic7).124D4 = D7×C4○D8 | φ: D4/C4 → C2 ⊆ Out C2×Dic7 | 112 | 4 | (C2xDic7).124D4 | 448,1220 |
(C2×Dic7).125D4 = (C2×C28)⋊Q8 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).125D4 | 448,180 |
(C2×Dic7).126D4 = C14.(C4×Q8) | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).126D4 | 448,181 |
(C2×Dic7).127D4 = Dic7⋊C4⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).127D4 | 448,186 |
(C2×Dic7).128D4 = C4⋊Dic7⋊8C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).128D4 | 448,188 |
(C2×Dic7).129D4 = C14.(C4×D4) | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).129D4 | 448,189 |
(C2×Dic7).130D4 = D14⋊(C4⋊C4) | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).130D4 | 448,201 |
(C2×Dic7).131D4 = D14⋊C4⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).131D4 | 448,202 |
(C2×Dic7).132D4 = C23⋊C4⋊5D7 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 112 | 8- | (C2xDic7).132D4 | 448,274 |
(C2×Dic7).133D4 = D4.D7⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).133D4 | 448,291 |
(C2×Dic7).134D4 = Dic7.D8 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).134D4 | 448,293 |
(C2×Dic7).135D4 = D4⋊Dic14 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).135D4 | 448,295 |
(C2×Dic7).136D4 = Dic14⋊2D4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).136D4 | 448,296 |
(C2×Dic7).137D4 = D4.Dic14 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).137D4 | 448,297 |
(C2×Dic7).138D4 = D4.2Dic14 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).138D4 | 448,300 |
(C2×Dic7).139D4 = (D4×D7)⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).139D4 | 448,304 |
(C2×Dic7).140D4 = D4⋊(C4×D7) | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).140D4 | 448,305 |
(C2×Dic7).141D4 = C8⋊Dic7⋊C2 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).141D4 | 448,313 |
(C2×Dic7).142D4 = D4⋊3D28 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).142D4 | 448,315 |
(C2×Dic7).143D4 = D4.D28 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).143D4 | 448,317 |
(C2×Dic7).144D4 = C56⋊1C4⋊C2 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).144D4 | 448,318 |
(C2×Dic7).145D4 = D4⋊D7⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).145D4 | 448,319 |
(C2×Dic7).146D4 = C7⋊Q16⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).146D4 | 448,323 |
(C2×Dic7).147D4 = Q8⋊Dic14 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).147D4 | 448,325 |
(C2×Dic7).148D4 = Dic7⋊Q16 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).148D4 | 448,327 |
(C2×Dic7).149D4 = Dic7.Q16 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).149D4 | 448,328 |
(C2×Dic7).150D4 = Q8.Dic14 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).150D4 | 448,330 |
(C2×Dic7).151D4 = Q8.2Dic14 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).151D4 | 448,333 |
(C2×Dic7).152D4 = (Q8×D7)⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).152D4 | 448,336 |
(C2×Dic7).153D4 = Q8⋊(C4×D7) | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).153D4 | 448,337 |
(C2×Dic7).154D4 = Q8.D28 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).154D4 | 448,344 |
(C2×Dic7).155D4 = D28⋊4D4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).155D4 | 448,345 |
(C2×Dic7).156D4 = D14⋊C8.C2 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).156D4 | 448,348 |
(C2×Dic7).157D4 = (C2×C8).D14 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).157D4 | 448,349 |
(C2×Dic7).158D4 = Q8⋊D7⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).158D4 | 448,351 |
(C2×Dic7).159D4 = D7×C4≀C2 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 56 | 4 | (C2xDic7).159D4 | 448,354 |
(C2×Dic7).160D4 = Dic28⋊9C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).160D4 | 448,387 |
(C2×Dic7).161D4 = Dic14⋊Q8 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).161D4 | 448,388 |
(C2×Dic7).162D4 = C8⋊(C4×D7) | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).162D4 | 448,395 |
(C2×Dic7).163D4 = C4.Q8⋊D7 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).163D4 | 448,400 |
(C2×Dic7).164D4 = C28.(C4○D4) | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).164D4 | 448,401 |
(C2×Dic7).165D4 = D56⋊9C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).165D4 | 448,403 |
(C2×Dic7).166D4 = Dic14⋊2Q8 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).166D4 | 448,409 |
(C2×Dic7).167D4 = C56⋊(C2×C4) | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).167D4 | 448,415 |
(C2×Dic7).168D4 = C2.D8⋊D7 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).168D4 | 448,419 |
(C2×Dic7).169D4 = C2.D8⋊7D7 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).169D4 | 448,422 |
(C2×Dic7).170D4 = C56⋊C2⋊C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).170D4 | 448,423 |
(C2×Dic7).171D4 = C24.44D14 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).171D4 | 448,476 |
(C2×Dic7).172D4 = C24.4D14 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).172D4 | 448,479 |
(C2×Dic7).173D4 = C24.46D14 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).173D4 | 448,480 |
(C2×Dic7).174D4 = C24.47D14 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).174D4 | 448,484 |
(C2×Dic7).175D4 = Dic7⋊(C4⋊C4) | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).175D4 | 448,506 |
(C2×Dic7).176D4 = C4⋊C4⋊5Dic7 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).176D4 | 448,515 |
(C2×Dic7).177D4 = D14⋊C4⋊6C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).177D4 | 448,523 |
(C2×Dic7).178D4 = D14⋊C4⋊7C4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).178D4 | 448,524 |
(C2×Dic7).179D4 = Dic7⋊D8 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).179D4 | 448,684 |
(C2×Dic7).180D4 = D8⋊Dic7 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).180D4 | 448,686 |
(C2×Dic7).181D4 = Dic14⋊D4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).181D4 | 448,692 |
(C2×Dic7).182D4 = Dic7⋊3SD16 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).182D4 | 448,696 |
(C2×Dic7).183D4 = SD16⋊Dic7 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).183D4 | 448,698 |
(C2×Dic7).184D4 = D28⋊7D4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).184D4 | 448,706 |
(C2×Dic7).185D4 = Dic14.16D4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).185D4 | 448,707 |
(C2×Dic7).186D4 = Dic7⋊3Q16 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).186D4 | 448,716 |
(C2×Dic7).187D4 = Q16⋊Dic7 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 448 | | (C2xDic7).187D4 | 448,718 |
(C2×Dic7).188D4 = D28.17D4 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).188D4 | 448,721 |
(C2×Dic7).189D4 = C2×C22⋊Dic14 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).189D4 | 448,934 |
(C2×Dic7).190D4 = C2×D14⋊Q8 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).190D4 | 448,961 |
(C2×Dic7).191D4 = C2×D8⋊D7 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).191D4 | 448,1208 |
(C2×Dic7).192D4 = C2×D56⋊C2 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 112 | | (C2xDic7).192D4 | 448,1212 |
(C2×Dic7).193D4 = C2×SD16⋊D7 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).193D4 | 448,1213 |
(C2×Dic7).194D4 = C2×Q16⋊D7 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 224 | | (C2xDic7).194D4 | 448,1217 |
(C2×Dic7).195D4 = SD16⋊D14 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 112 | 8- | (C2xDic7).195D4 | 448,1226 |
(C2×Dic7).196D4 = D56⋊C22 | φ: D4/C22 → C2 ⊆ Out C2×Dic7 | 112 | 8+ | (C2xDic7).196D4 | 448,1230 |
(C2×Dic7).197D4 = Dic7⋊C42 | φ: trivial image | 448 | | (C2xDic7).197D4 | 448,183 |
(C2×Dic7).198D4 = D14⋊C42 | φ: trivial image | 224 | | (C2xDic7).198D4 | 448,200 |
(C2×Dic7).199D4 = Dic7⋊4D8 | φ: trivial image | 224 | | (C2xDic7).199D4 | 448,290 |
(C2×Dic7).200D4 = Dic7⋊6SD16 | φ: trivial image | 224 | | (C2xDic7).200D4 | 448,292 |
(C2×Dic7).201D4 = D4⋊2D7⋊C4 | φ: trivial image | 224 | | (C2xDic7).201D4 | 448,306 |
(C2×Dic7).202D4 = Dic7⋊7SD16 | φ: trivial image | 224 | | (C2xDic7).202D4 | 448,322 |
(C2×Dic7).203D4 = Dic7⋊4Q16 | φ: trivial image | 448 | | (C2xDic7).203D4 | 448,324 |
(C2×Dic7).204D4 = Q8⋊2D7⋊C4 | φ: trivial image | 224 | | (C2xDic7).204D4 | 448,338 |
(C2×Dic7).205D4 = Dic7⋊8SD16 | φ: trivial image | 224 | | (C2xDic7).205D4 | 448,386 |
(C2×Dic7).206D4 = (C8×D7)⋊C4 | φ: trivial image | 224 | | (C2xDic7).206D4 | 448,394 |
(C2×Dic7).207D4 = Dic7⋊5D8 | φ: trivial image | 224 | | (C2xDic7).207D4 | 448,406 |
(C2×Dic7).208D4 = Dic28⋊6C4 | φ: trivial image | 448 | | (C2xDic7).208D4 | 448,407 |
(C2×Dic7).209D4 = C8.27(C4×D7) | φ: trivial image | 224 | | (C2xDic7).209D4 | 448,414 |
(C2×Dic7).210D4 = C22⋊C4×Dic7 | φ: trivial image | 224 | | (C2xDic7).210D4 | 448,475 |
(C2×Dic7).211D4 = C4⋊C4×Dic7 | φ: trivial image | 448 | | (C2xDic7).211D4 | 448,509 |
(C2×Dic7).212D4 = D8×Dic7 | φ: trivial image | 224 | | (C2xDic7).212D4 | 448,683 |
(C2×Dic7).213D4 = SD16×Dic7 | φ: trivial image | 224 | | (C2xDic7).213D4 | 448,695 |
(C2×Dic7).214D4 = Q16×Dic7 | φ: trivial image | 448 | | (C2xDic7).214D4 | 448,717 |
(C2×Dic7).215D4 = C2×D8⋊3D7 | φ: trivial image | 224 | | (C2xDic7).215D4 | 448,1209 |
(C2×Dic7).216D4 = C2×SD16⋊3D7 | φ: trivial image | 224 | | (C2xDic7).216D4 | 448,1214 |
(C2×Dic7).217D4 = C2×Q8.D14 | φ: trivial image | 224 | | (C2xDic7).217D4 | 448,1218 |