metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C8⋊6(C4×D7), C56⋊11(C2×C4), C56⋊C2⋊3C4, C56⋊C4⋊7C2, C2.D8⋊12D7, D28.9(C2×C4), (C2×C8).67D14, C14.54(C4×D4), C4⋊C4.172D14, Dic14⋊7(C2×C4), C22.92(D4×D7), Dic7⋊3Q8⋊7C2, C14.D8.7C2, D28⋊C4.7C2, C28.44(C4○D4), C14.Q16⋊23C2, C2.6(D8⋊D7), C7⋊4(SD16⋊C4), C28.51(C22×C4), C14.44(C8⋊C22), (C2×C28).305C23, (C2×C56).145C22, C4.12(Q8⋊2D7), C2.6(Q16⋊D7), (C2×Dic7).170D4, (C2×D28).85C22, C2.14(D28⋊C4), C14.73(C8.C22), (C4×Dic7).37C22, (C2×Dic14).93C22, C4.45(C2×C4×D7), (C7×C2.D8)⋊9C2, (C2×C56⋊C2).7C2, (C2×C7⋊C8).74C22, (C2×C14).310(C2×D4), (C7×C4⋊C4).98C22, (C2×C4).408(C22×D7), SmallGroup(448,423)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C56⋊C2⋊C4
G = < a,b,c | a56=b2=c4=1, bab=a27, cac-1=a15, bc=cb >
Subgroups: 652 in 120 conjugacy classes, 49 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, Dic7, C28, C28, D14, C2×C14, C8⋊C4, D4⋊C4, Q8⋊C4, C2.D8, C4×D4, C4×Q8, C2×SD16, C7⋊C8, C56, Dic14, Dic14, C4×D7, D28, D28, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×D7, SD16⋊C4, C56⋊C2, C2×C7⋊C8, C4×Dic7, C4×Dic7, Dic7⋊C4, D14⋊C4, C7×C4⋊C4, C2×C56, C2×Dic14, C2×C4×D7, C2×D28, C14.D8, C14.Q16, C56⋊C4, C7×C2.D8, Dic7⋊3Q8, D28⋊C4, C2×C56⋊C2, C56⋊C2⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C4×D4, C8⋊C22, C8.C22, C4×D7, C22×D7, SD16⋊C4, C2×C4×D7, D4×D7, Q8⋊2D7, D28⋊C4, D8⋊D7, Q16⋊D7, C56⋊C2⋊C4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 162)(2 133)(3 160)(4 131)(5 158)(6 129)(7 156)(8 127)(9 154)(10 125)(11 152)(12 123)(13 150)(14 121)(15 148)(16 119)(17 146)(18 117)(19 144)(20 115)(21 142)(22 113)(23 140)(24 167)(25 138)(26 165)(27 136)(28 163)(29 134)(30 161)(31 132)(32 159)(33 130)(34 157)(35 128)(36 155)(37 126)(38 153)(39 124)(40 151)(41 122)(42 149)(43 120)(44 147)(45 118)(46 145)(47 116)(48 143)(49 114)(50 141)(51 168)(52 139)(53 166)(54 137)(55 164)(56 135)(57 185)(58 212)(59 183)(60 210)(61 181)(62 208)(63 179)(64 206)(65 177)(66 204)(67 175)(68 202)(69 173)(70 200)(71 171)(72 198)(73 169)(74 196)(75 223)(76 194)(77 221)(78 192)(79 219)(80 190)(81 217)(82 188)(83 215)(84 186)(85 213)(86 184)(87 211)(88 182)(89 209)(90 180)(91 207)(92 178)(93 205)(94 176)(95 203)(96 174)(97 201)(98 172)(99 199)(100 170)(101 197)(102 224)(103 195)(104 222)(105 193)(106 220)(107 191)(108 218)(109 189)(110 216)(111 187)(112 214)
(1 211 162 87)(2 170 163 102)(3 185 164 61)(4 200 165 76)(5 215 166 91)(6 174 167 106)(7 189 168 65)(8 204 113 80)(9 219 114 95)(10 178 115 110)(11 193 116 69)(12 208 117 84)(13 223 118 99)(14 182 119 58)(15 197 120 73)(16 212 121 88)(17 171 122 103)(18 186 123 62)(19 201 124 77)(20 216 125 92)(21 175 126 107)(22 190 127 66)(23 205 128 81)(24 220 129 96)(25 179 130 111)(26 194 131 70)(27 209 132 85)(28 224 133 100)(29 183 134 59)(30 198 135 74)(31 213 136 89)(32 172 137 104)(33 187 138 63)(34 202 139 78)(35 217 140 93)(36 176 141 108)(37 191 142 67)(38 206 143 82)(39 221 144 97)(40 180 145 112)(41 195 146 71)(42 210 147 86)(43 169 148 101)(44 184 149 60)(45 199 150 75)(46 214 151 90)(47 173 152 105)(48 188 153 64)(49 203 154 79)(50 218 155 94)(51 177 156 109)(52 192 157 68)(53 207 158 83)(54 222 159 98)(55 181 160 57)(56 196 161 72)
G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,162)(2,133)(3,160)(4,131)(5,158)(6,129)(7,156)(8,127)(9,154)(10,125)(11,152)(12,123)(13,150)(14,121)(15,148)(16,119)(17,146)(18,117)(19,144)(20,115)(21,142)(22,113)(23,140)(24,167)(25,138)(26,165)(27,136)(28,163)(29,134)(30,161)(31,132)(32,159)(33,130)(34,157)(35,128)(36,155)(37,126)(38,153)(39,124)(40,151)(41,122)(42,149)(43,120)(44,147)(45,118)(46,145)(47,116)(48,143)(49,114)(50,141)(51,168)(52,139)(53,166)(54,137)(55,164)(56,135)(57,185)(58,212)(59,183)(60,210)(61,181)(62,208)(63,179)(64,206)(65,177)(66,204)(67,175)(68,202)(69,173)(70,200)(71,171)(72,198)(73,169)(74,196)(75,223)(76,194)(77,221)(78,192)(79,219)(80,190)(81,217)(82,188)(83,215)(84,186)(85,213)(86,184)(87,211)(88,182)(89,209)(90,180)(91,207)(92,178)(93,205)(94,176)(95,203)(96,174)(97,201)(98,172)(99,199)(100,170)(101,197)(102,224)(103,195)(104,222)(105,193)(106,220)(107,191)(108,218)(109,189)(110,216)(111,187)(112,214), (1,211,162,87)(2,170,163,102)(3,185,164,61)(4,200,165,76)(5,215,166,91)(6,174,167,106)(7,189,168,65)(8,204,113,80)(9,219,114,95)(10,178,115,110)(11,193,116,69)(12,208,117,84)(13,223,118,99)(14,182,119,58)(15,197,120,73)(16,212,121,88)(17,171,122,103)(18,186,123,62)(19,201,124,77)(20,216,125,92)(21,175,126,107)(22,190,127,66)(23,205,128,81)(24,220,129,96)(25,179,130,111)(26,194,131,70)(27,209,132,85)(28,224,133,100)(29,183,134,59)(30,198,135,74)(31,213,136,89)(32,172,137,104)(33,187,138,63)(34,202,139,78)(35,217,140,93)(36,176,141,108)(37,191,142,67)(38,206,143,82)(39,221,144,97)(40,180,145,112)(41,195,146,71)(42,210,147,86)(43,169,148,101)(44,184,149,60)(45,199,150,75)(46,214,151,90)(47,173,152,105)(48,188,153,64)(49,203,154,79)(50,218,155,94)(51,177,156,109)(52,192,157,68)(53,207,158,83)(54,222,159,98)(55,181,160,57)(56,196,161,72)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,162)(2,133)(3,160)(4,131)(5,158)(6,129)(7,156)(8,127)(9,154)(10,125)(11,152)(12,123)(13,150)(14,121)(15,148)(16,119)(17,146)(18,117)(19,144)(20,115)(21,142)(22,113)(23,140)(24,167)(25,138)(26,165)(27,136)(28,163)(29,134)(30,161)(31,132)(32,159)(33,130)(34,157)(35,128)(36,155)(37,126)(38,153)(39,124)(40,151)(41,122)(42,149)(43,120)(44,147)(45,118)(46,145)(47,116)(48,143)(49,114)(50,141)(51,168)(52,139)(53,166)(54,137)(55,164)(56,135)(57,185)(58,212)(59,183)(60,210)(61,181)(62,208)(63,179)(64,206)(65,177)(66,204)(67,175)(68,202)(69,173)(70,200)(71,171)(72,198)(73,169)(74,196)(75,223)(76,194)(77,221)(78,192)(79,219)(80,190)(81,217)(82,188)(83,215)(84,186)(85,213)(86,184)(87,211)(88,182)(89,209)(90,180)(91,207)(92,178)(93,205)(94,176)(95,203)(96,174)(97,201)(98,172)(99,199)(100,170)(101,197)(102,224)(103,195)(104,222)(105,193)(106,220)(107,191)(108,218)(109,189)(110,216)(111,187)(112,214), (1,211,162,87)(2,170,163,102)(3,185,164,61)(4,200,165,76)(5,215,166,91)(6,174,167,106)(7,189,168,65)(8,204,113,80)(9,219,114,95)(10,178,115,110)(11,193,116,69)(12,208,117,84)(13,223,118,99)(14,182,119,58)(15,197,120,73)(16,212,121,88)(17,171,122,103)(18,186,123,62)(19,201,124,77)(20,216,125,92)(21,175,126,107)(22,190,127,66)(23,205,128,81)(24,220,129,96)(25,179,130,111)(26,194,131,70)(27,209,132,85)(28,224,133,100)(29,183,134,59)(30,198,135,74)(31,213,136,89)(32,172,137,104)(33,187,138,63)(34,202,139,78)(35,217,140,93)(36,176,141,108)(37,191,142,67)(38,206,143,82)(39,221,144,97)(40,180,145,112)(41,195,146,71)(42,210,147,86)(43,169,148,101)(44,184,149,60)(45,199,150,75)(46,214,151,90)(47,173,152,105)(48,188,153,64)(49,203,154,79)(50,218,155,94)(51,177,156,109)(52,192,157,68)(53,207,158,83)(54,222,159,98)(55,181,160,57)(56,196,161,72) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,162),(2,133),(3,160),(4,131),(5,158),(6,129),(7,156),(8,127),(9,154),(10,125),(11,152),(12,123),(13,150),(14,121),(15,148),(16,119),(17,146),(18,117),(19,144),(20,115),(21,142),(22,113),(23,140),(24,167),(25,138),(26,165),(27,136),(28,163),(29,134),(30,161),(31,132),(32,159),(33,130),(34,157),(35,128),(36,155),(37,126),(38,153),(39,124),(40,151),(41,122),(42,149),(43,120),(44,147),(45,118),(46,145),(47,116),(48,143),(49,114),(50,141),(51,168),(52,139),(53,166),(54,137),(55,164),(56,135),(57,185),(58,212),(59,183),(60,210),(61,181),(62,208),(63,179),(64,206),(65,177),(66,204),(67,175),(68,202),(69,173),(70,200),(71,171),(72,198),(73,169),(74,196),(75,223),(76,194),(77,221),(78,192),(79,219),(80,190),(81,217),(82,188),(83,215),(84,186),(85,213),(86,184),(87,211),(88,182),(89,209),(90,180),(91,207),(92,178),(93,205),(94,176),(95,203),(96,174),(97,201),(98,172),(99,199),(100,170),(101,197),(102,224),(103,195),(104,222),(105,193),(106,220),(107,191),(108,218),(109,189),(110,216),(111,187),(112,214)], [(1,211,162,87),(2,170,163,102),(3,185,164,61),(4,200,165,76),(5,215,166,91),(6,174,167,106),(7,189,168,65),(8,204,113,80),(9,219,114,95),(10,178,115,110),(11,193,116,69),(12,208,117,84),(13,223,118,99),(14,182,119,58),(15,197,120,73),(16,212,121,88),(17,171,122,103),(18,186,123,62),(19,201,124,77),(20,216,125,92),(21,175,126,107),(22,190,127,66),(23,205,128,81),(24,220,129,96),(25,179,130,111),(26,194,131,70),(27,209,132,85),(28,224,133,100),(29,183,134,59),(30,198,135,74),(31,213,136,89),(32,172,137,104),(33,187,138,63),(34,202,139,78),(35,217,140,93),(36,176,141,108),(37,191,142,67),(38,206,143,82),(39,221,144,97),(40,180,145,112),(41,195,146,71),(42,210,147,86),(43,169,148,101),(44,184,149,60),(45,199,150,75),(46,214,151,90),(47,173,152,105),(48,188,153,64),(49,203,154,79),(50,218,155,94),(51,177,156,109),(52,192,157,68),(53,207,158,83),(54,222,159,98),(55,181,160,57),(56,196,161,72)]])
64 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 14A | ··· | 14I | 28A | ··· | 28F | 28G | ··· | 28R | 56A | ··· | 56L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | 1 | 1 | 28 | 28 | 2 | 2 | 4 | 4 | 4 | 4 | 14 | 14 | 14 | 14 | 28 | 28 | 2 | 2 | 2 | 4 | 4 | 28 | 28 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
64 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D7 | C4○D4 | D14 | D14 | C4×D7 | C8⋊C22 | C8.C22 | Q8⋊2D7 | D4×D7 | D8⋊D7 | Q16⋊D7 |
kernel | C56⋊C2⋊C4 | C14.D8 | C14.Q16 | C56⋊C4 | C7×C2.D8 | Dic7⋊3Q8 | D28⋊C4 | C2×C56⋊C2 | C56⋊C2 | C2×Dic7 | C2.D8 | C28 | C4⋊C4 | C2×C8 | C8 | C14 | C14 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 2 | 3 | 2 | 6 | 3 | 12 | 1 | 1 | 3 | 3 | 6 | 6 |
Matrix representation of C56⋊C2⋊C4 ►in GL8(𝔽113)
48 | 21 | 76 | 69 | 0 | 0 | 0 | 0 |
63 | 79 | 59 | 64 | 0 | 0 | 0 | 0 |
8 | 26 | 50 | 92 | 0 | 0 | 0 | 0 |
24 | 87 | 87 | 49 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 42 | 76 | 42 | 76 |
0 | 0 | 0 | 0 | 37 | 36 | 37 | 36 |
0 | 0 | 0 | 0 | 71 | 37 | 42 | 76 |
0 | 0 | 0 | 0 | 76 | 77 | 37 | 36 |
15 | 24 | 0 | 0 | 0 | 0 | 0 | 0 |
66 | 98 | 0 | 0 | 0 | 0 | 0 | 0 |
74 | 111 | 112 | 0 | 0 | 0 | 0 | 0 |
77 | 87 | 89 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 80 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 80 | 33 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 33 | 104 |
0 | 0 | 0 | 0 | 0 | 0 | 33 | 80 |
29 | 28 | 0 | 110 | 0 | 0 | 0 | 0 |
25 | 82 | 3 | 30 | 0 | 0 | 0 | 0 |
37 | 47 | 90 | 85 | 0 | 0 | 0 | 0 |
62 | 19 | 28 | 25 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 0 | 51 | 49 |
0 | 0 | 0 | 0 | 0 | 5 | 64 | 62 |
0 | 0 | 0 | 0 | 51 | 49 | 108 | 0 |
0 | 0 | 0 | 0 | 64 | 62 | 0 | 108 |
G:=sub<GL(8,GF(113))| [48,63,8,24,0,0,0,0,21,79,26,87,0,0,0,0,76,59,50,87,0,0,0,0,69,64,92,49,0,0,0,0,0,0,0,0,42,37,71,76,0,0,0,0,76,36,37,77,0,0,0,0,42,37,42,37,0,0,0,0,76,36,76,36],[15,66,74,77,0,0,0,0,24,98,111,87,0,0,0,0,0,0,112,89,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,80,80,0,0,0,0,0,0,9,33,0,0,0,0,0,0,0,0,33,33,0,0,0,0,0,0,104,80],[29,25,37,62,0,0,0,0,28,82,47,19,0,0,0,0,0,3,90,28,0,0,0,0,110,30,85,25,0,0,0,0,0,0,0,0,5,0,51,64,0,0,0,0,0,5,49,62,0,0,0,0,51,64,108,0,0,0,0,0,49,62,0,108] >;
C56⋊C2⋊C4 in GAP, Magma, Sage, TeX
C_{56}\rtimes C_2\rtimes C_4
% in TeX
G:=Group("C56:C2:C4");
// GroupNames label
G:=SmallGroup(448,423);
// by ID
G=gap.SmallGroup(448,423);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,120,219,58,1684,438,102,18822]);
// Polycyclic
G:=Group<a,b,c|a^56=b^2=c^4=1,b*a*b=a^27,c*a*c^-1=a^15,b*c=c*b>;
// generators/relations