Copied to
clipboard

G = D4.9D28order 448 = 26·7

4th non-split extension by D4 of D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.9D28, Q8.9D28, D28.34D4, C42.25D14, Dic14.34D4, M4(2).7D14, C4≀C23D7, (C7×D4).4D4, C28.5(C2×D4), (C7×Q8).4D4, C4○D4.3D14, C4.127(D4×D7), C4.11(C2×D28), Dic14⋊C49C2, C282Q810C2, C8.D149C2, (C2×Dic7).2D4, C22.31(D4×D7), C14.29C22≀C2, D4.9D142C2, C4.12D281C2, C72(D4.10D4), (C4×C28).52C22, (C2×C28).266C23, C4○D28.15C22, C2.32(C22⋊D28), D4.10D14.1C2, (C7×M4(2)).4C22, C4.Dic7.10C22, (C2×Dic14).76C22, (C7×C4≀C2)⋊3C2, (C2×C14).28(C2×D4), (C7×C4○D4).7C22, (C2×C4).111(C22×D7), SmallGroup(448,360)

Series: Derived Chief Lower central Upper central

C1C2×C28 — D4.9D28
C1C7C14C28C2×C28C4○D28D4.10D14 — D4.9D28
C7C14C2×C28 — D4.9D28
C1C2C2×C4C4≀C2

Generators and relations for D4.9D28
 G = < a,b,c,d | a4=b2=1, c28=d2=a2, bab=cac-1=dad-1=a-1, cbc-1=a-1b, dbd-1=ab, dcd-1=c27 >

Subgroups: 764 in 142 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, D7, C14, C14, C42, C4⋊C4, M4(2), M4(2), SD16, Q16, C2×Q8, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C4.10D4, C4≀C2, C4≀C2, C4⋊Q8, C8.C22, 2- 1+4, C7⋊C8, C56, Dic14, Dic14, C4×D7, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, D4.10D4, C56⋊C2, Dic28, C4.Dic7, C4⋊Dic7, D4.D7, C7⋊Q16, C4×C28, C7×M4(2), C2×Dic14, C2×Dic14, C4○D28, C4○D28, D42D7, Q8×D7, C7×C4○D4, Dic14⋊C4, C4.12D28, C7×C4≀C2, C282Q8, C8.D14, D4.9D14, D4.10D14, D4.9D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, D28, C22×D7, D4.10D4, C2×D28, D4×D7, C22⋊D28, D4.9D28

Smallest permutation representation of D4.9D28
On 112 points
Generators in S112
(1 15 29 43)(2 44 30 16)(3 17 31 45)(4 46 32 18)(5 19 33 47)(6 48 34 20)(7 21 35 49)(8 50 36 22)(9 23 37 51)(10 52 38 24)(11 25 39 53)(12 54 40 26)(13 27 41 55)(14 56 42 28)(57 99 85 71)(58 72 86 100)(59 101 87 73)(60 74 88 102)(61 103 89 75)(62 76 90 104)(63 105 91 77)(64 78 92 106)(65 107 93 79)(66 80 94 108)(67 109 95 81)(68 82 96 110)(69 111 97 83)(70 84 98 112)
(1 36)(2 23)(3 38)(4 25)(5 40)(6 27)(7 42)(8 29)(9 44)(10 31)(11 46)(12 33)(13 48)(14 35)(15 50)(16 37)(17 52)(18 39)(19 54)(20 41)(21 56)(22 43)(24 45)(26 47)(28 49)(30 51)(32 53)(34 55)(57 78)(58 93)(59 80)(60 95)(61 82)(62 97)(63 84)(64 99)(65 86)(66 101)(67 88)(68 103)(69 90)(70 105)(71 92)(72 107)(73 94)(74 109)(75 96)(76 111)(77 98)(79 100)(81 102)(83 104)(85 106)(87 108)(89 110)(91 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 60 29 88)(2 87 30 59)(3 58 31 86)(4 85 32 57)(5 112 33 84)(6 83 34 111)(7 110 35 82)(8 81 36 109)(9 108 37 80)(10 79 38 107)(11 106 39 78)(12 77 40 105)(13 104 41 76)(14 75 42 103)(15 102 43 74)(16 73 44 101)(17 100 45 72)(18 71 46 99)(19 98 47 70)(20 69 48 97)(21 96 49 68)(22 67 50 95)(23 94 51 66)(24 65 52 93)(25 92 53 64)(26 63 54 91)(27 90 55 62)(28 61 56 89)

G:=sub<Sym(112)| (1,15,29,43)(2,44,30,16)(3,17,31,45)(4,46,32,18)(5,19,33,47)(6,48,34,20)(7,21,35,49)(8,50,36,22)(9,23,37,51)(10,52,38,24)(11,25,39,53)(12,54,40,26)(13,27,41,55)(14,56,42,28)(57,99,85,71)(58,72,86,100)(59,101,87,73)(60,74,88,102)(61,103,89,75)(62,76,90,104)(63,105,91,77)(64,78,92,106)(65,107,93,79)(66,80,94,108)(67,109,95,81)(68,82,96,110)(69,111,97,83)(70,84,98,112), (1,36)(2,23)(3,38)(4,25)(5,40)(6,27)(7,42)(8,29)(9,44)(10,31)(11,46)(12,33)(13,48)(14,35)(15,50)(16,37)(17,52)(18,39)(19,54)(20,41)(21,56)(22,43)(24,45)(26,47)(28,49)(30,51)(32,53)(34,55)(57,78)(58,93)(59,80)(60,95)(61,82)(62,97)(63,84)(64,99)(65,86)(66,101)(67,88)(68,103)(69,90)(70,105)(71,92)(72,107)(73,94)(74,109)(75,96)(76,111)(77,98)(79,100)(81,102)(83,104)(85,106)(87,108)(89,110)(91,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,60,29,88)(2,87,30,59)(3,58,31,86)(4,85,32,57)(5,112,33,84)(6,83,34,111)(7,110,35,82)(8,81,36,109)(9,108,37,80)(10,79,38,107)(11,106,39,78)(12,77,40,105)(13,104,41,76)(14,75,42,103)(15,102,43,74)(16,73,44,101)(17,100,45,72)(18,71,46,99)(19,98,47,70)(20,69,48,97)(21,96,49,68)(22,67,50,95)(23,94,51,66)(24,65,52,93)(25,92,53,64)(26,63,54,91)(27,90,55,62)(28,61,56,89)>;

G:=Group( (1,15,29,43)(2,44,30,16)(3,17,31,45)(4,46,32,18)(5,19,33,47)(6,48,34,20)(7,21,35,49)(8,50,36,22)(9,23,37,51)(10,52,38,24)(11,25,39,53)(12,54,40,26)(13,27,41,55)(14,56,42,28)(57,99,85,71)(58,72,86,100)(59,101,87,73)(60,74,88,102)(61,103,89,75)(62,76,90,104)(63,105,91,77)(64,78,92,106)(65,107,93,79)(66,80,94,108)(67,109,95,81)(68,82,96,110)(69,111,97,83)(70,84,98,112), (1,36)(2,23)(3,38)(4,25)(5,40)(6,27)(7,42)(8,29)(9,44)(10,31)(11,46)(12,33)(13,48)(14,35)(15,50)(16,37)(17,52)(18,39)(19,54)(20,41)(21,56)(22,43)(24,45)(26,47)(28,49)(30,51)(32,53)(34,55)(57,78)(58,93)(59,80)(60,95)(61,82)(62,97)(63,84)(64,99)(65,86)(66,101)(67,88)(68,103)(69,90)(70,105)(71,92)(72,107)(73,94)(74,109)(75,96)(76,111)(77,98)(79,100)(81,102)(83,104)(85,106)(87,108)(89,110)(91,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,60,29,88)(2,87,30,59)(3,58,31,86)(4,85,32,57)(5,112,33,84)(6,83,34,111)(7,110,35,82)(8,81,36,109)(9,108,37,80)(10,79,38,107)(11,106,39,78)(12,77,40,105)(13,104,41,76)(14,75,42,103)(15,102,43,74)(16,73,44,101)(17,100,45,72)(18,71,46,99)(19,98,47,70)(20,69,48,97)(21,96,49,68)(22,67,50,95)(23,94,51,66)(24,65,52,93)(25,92,53,64)(26,63,54,91)(27,90,55,62)(28,61,56,89) );

G=PermutationGroup([[(1,15,29,43),(2,44,30,16),(3,17,31,45),(4,46,32,18),(5,19,33,47),(6,48,34,20),(7,21,35,49),(8,50,36,22),(9,23,37,51),(10,52,38,24),(11,25,39,53),(12,54,40,26),(13,27,41,55),(14,56,42,28),(57,99,85,71),(58,72,86,100),(59,101,87,73),(60,74,88,102),(61,103,89,75),(62,76,90,104),(63,105,91,77),(64,78,92,106),(65,107,93,79),(66,80,94,108),(67,109,95,81),(68,82,96,110),(69,111,97,83),(70,84,98,112)], [(1,36),(2,23),(3,38),(4,25),(5,40),(6,27),(7,42),(8,29),(9,44),(10,31),(11,46),(12,33),(13,48),(14,35),(15,50),(16,37),(17,52),(18,39),(19,54),(20,41),(21,56),(22,43),(24,45),(26,47),(28,49),(30,51),(32,53),(34,55),(57,78),(58,93),(59,80),(60,95),(61,82),(62,97),(63,84),(64,99),(65,86),(66,101),(67,88),(68,103),(69,90),(70,105),(71,92),(72,107),(73,94),(74,109),(75,96),(76,111),(77,98),(79,100),(81,102),(83,104),(85,106),(87,108),(89,110),(91,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,60,29,88),(2,87,30,59),(3,58,31,86),(4,85,32,57),(5,112,33,84),(6,83,34,111),(7,110,35,82),(8,81,36,109),(9,108,37,80),(10,79,38,107),(11,106,39,78),(12,77,40,105),(13,104,41,76),(14,75,42,103),(15,102,43,74),(16,73,44,101),(17,100,45,72),(18,71,46,99),(19,98,47,70),(20,69,48,97),(21,96,49,68),(22,67,50,95),(23,94,51,66),(24,65,52,93),(25,92,53,64),(26,63,54,91),(27,90,55,62),(28,61,56,89)]])

58 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I7A7B7C8A8B14A14B14C14D14E14F14G14H14I28A···28F28G···28U28V28W28X56A···56F
order122224444444447778814141414141414141428···2828···2828282856···56
size11242822444282828562228562224448882···24···48888···8

58 irreducible representations

dim11111111222222222224444
type+++++++++++++++++++-++-
imageC1C2C2C2C2C2C2C2D4D4D4D4D4D7D14D14D14D28D28D4.10D4D4×D7D4×D7D4.9D28
kernelD4.9D28Dic14⋊C4C4.12D28C7×C4≀C2C282Q8C8.D14D4.9D14D4.10D14Dic14D28C2×Dic7C7×D4C7×Q8C4≀C2C42M4(2)C4○D4D4Q8C7C4C22C1
# reps111111111121133336623312

Matrix representation of D4.9D28 in GL4(𝔽113) generated by

94600
6710400
0010467
00469
,
001120
000112
112000
011200
,
0011234
007925
1041300
1009400
,
10300
410300
004819
006965
G:=sub<GL(4,GF(113))| [9,67,0,0,46,104,0,0,0,0,104,46,0,0,67,9],[0,0,112,0,0,0,0,112,112,0,0,0,0,112,0,0],[0,0,104,100,0,0,13,94,112,79,0,0,34,25,0,0],[10,4,0,0,3,103,0,0,0,0,48,69,0,0,19,65] >;

D4.9D28 in GAP, Magma, Sage, TeX

D_4._9D_{28}
% in TeX

G:=Group("D4.9D28");
// GroupNames label

G:=SmallGroup(448,360);
// by ID

G=gap.SmallGroup(448,360);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,254,219,58,1123,136,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^28=d^2=a^2,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^-1*b,d*b*d^-1=a*b,d*c*d^-1=c^27>;
// generators/relations

׿
×
𝔽