Copied to
clipboard

?

G = C10×A4⋊C4order 480 = 25·3·5

Direct product of C10 and A4⋊C4

direct product, non-abelian, soluble, monomial

Aliases: C10×A4⋊C4, (C2×A4)⋊C20, (C10×A4)⋊5C4, C24.(C5×S3), A42(C2×C20), C2.2(C10×S4), C23⋊(C5×Dic3), C10.36(C2×S4), (C2×C10).12S4, (C22×A4).C10, C22.6(C5×S4), C22⋊(C10×Dic3), C23.4(S3×C10), (C23×C10).1S3, (C22×C10)⋊2Dic3, (C22×C10).11D6, (C10×A4).21C22, (A4×C2×C10).3C2, (C5×A4)⋊12(C2×C4), (C2×A4).4(C2×C10), (C2×C10)⋊4(C2×Dic3), SmallGroup(480,1022)

Series: Derived Chief Lower central Upper central

C1C22A4 — C10×A4⋊C4
C1C22A4C2×A4C10×A4C5×A4⋊C4 — C10×A4⋊C4
A4 — C10×A4⋊C4

Subgroups: 376 in 126 conjugacy classes, 36 normal (20 characteristic)
C1, C2, C2 [×2], C2 [×4], C3, C4 [×4], C22 [×2], C22 [×10], C5, C6 [×3], C2×C4 [×8], C23, C23 [×2], C23 [×4], C10, C10 [×2], C10 [×4], Dic3 [×2], A4, C2×C6, C15, C22⋊C4 [×4], C22×C4 [×2], C24, C20 [×4], C2×C10 [×2], C2×C10 [×10], C2×Dic3, C2×A4, C2×A4 [×2], C30 [×3], C2×C22⋊C4, C2×C20 [×8], C22×C10, C22×C10 [×2], C22×C10 [×4], A4⋊C4 [×2], C22×A4, C5×Dic3 [×2], C5×A4, C2×C30, C5×C22⋊C4 [×4], C22×C20 [×2], C23×C10, C2×A4⋊C4, C10×Dic3, C10×A4, C10×A4 [×2], C10×C22⋊C4, C5×A4⋊C4 [×2], A4×C2×C10, C10×A4⋊C4

Quotients:
C1, C2 [×3], C4 [×2], C22, C5, S3, C2×C4, C10 [×3], Dic3 [×2], D6, C20 [×2], C2×C10, C2×Dic3, S4, C5×S3, C2×C20, A4⋊C4 [×2], C2×S4, C5×Dic3 [×2], S3×C10, C2×A4⋊C4, C10×Dic3, C5×S4, C5×A4⋊C4 [×2], C10×S4, C10×A4⋊C4

Generators and relations
 G = < a,b,c,d,e | a10=b2=c2=d3=e4=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe-1=bc=cb, dcd-1=b, ce=ec, ede-1=d-1 >

Smallest permutation representation
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)
(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(21 59)(22 60)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(71 98)(72 99)(73 100)(74 91)(75 92)(76 93)(77 94)(78 95)(79 96)(80 97)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)
(1 67)(2 68)(3 69)(4 70)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 113)(42 114)(43 115)(44 116)(45 117)(46 118)(47 119)(48 120)(49 111)(50 112)(71 98)(72 99)(73 100)(74 91)(75 92)(76 93)(77 94)(78 95)(79 96)(80 97)
(1 85 92)(2 86 93)(3 87 94)(4 88 95)(5 89 96)(6 90 97)(7 81 98)(8 82 99)(9 83 100)(10 84 91)(11 111 53)(12 112 54)(13 113 55)(14 114 56)(15 115 57)(16 116 58)(17 117 59)(18 118 60)(19 119 51)(20 120 52)(21 37 45)(22 38 46)(23 39 47)(24 40 48)(25 31 49)(26 32 50)(27 33 41)(28 34 42)(29 35 43)(30 36 44)(61 109 79)(62 110 80)(63 101 71)(64 102 72)(65 103 73)(66 104 74)(67 105 75)(68 106 76)(69 107 77)(70 108 78)
(1 38 67 18)(2 39 68 19)(3 40 69 20)(4 31 70 11)(5 32 61 12)(6 33 62 13)(7 34 63 14)(8 35 64 15)(9 36 65 16)(10 37 66 17)(21 104 59 84)(22 105 60 85)(23 106 51 86)(24 107 52 87)(25 108 53 88)(26 109 54 89)(27 110 55 90)(28 101 56 81)(29 102 57 82)(30 103 58 83)(41 80 113 97)(42 71 114 98)(43 72 115 99)(44 73 116 100)(45 74 117 91)(46 75 118 92)(47 76 119 93)(48 77 120 94)(49 78 111 95)(50 79 112 96)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(21,59)(22,60)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(71,98)(72,99)(73,100)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110), (1,67)(2,68)(3,69)(4,70)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,111)(50,112)(71,98)(72,99)(73,100)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97), (1,85,92)(2,86,93)(3,87,94)(4,88,95)(5,89,96)(6,90,97)(7,81,98)(8,82,99)(9,83,100)(10,84,91)(11,111,53)(12,112,54)(13,113,55)(14,114,56)(15,115,57)(16,116,58)(17,117,59)(18,118,60)(19,119,51)(20,120,52)(21,37,45)(22,38,46)(23,39,47)(24,40,48)(25,31,49)(26,32,50)(27,33,41)(28,34,42)(29,35,43)(30,36,44)(61,109,79)(62,110,80)(63,101,71)(64,102,72)(65,103,73)(66,104,74)(67,105,75)(68,106,76)(69,107,77)(70,108,78), (1,38,67,18)(2,39,68,19)(3,40,69,20)(4,31,70,11)(5,32,61,12)(6,33,62,13)(7,34,63,14)(8,35,64,15)(9,36,65,16)(10,37,66,17)(21,104,59,84)(22,105,60,85)(23,106,51,86)(24,107,52,87)(25,108,53,88)(26,109,54,89)(27,110,55,90)(28,101,56,81)(29,102,57,82)(30,103,58,83)(41,80,113,97)(42,71,114,98)(43,72,115,99)(44,73,116,100)(45,74,117,91)(46,75,118,92)(47,76,119,93)(48,77,120,94)(49,78,111,95)(50,79,112,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(21,59)(22,60)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(71,98)(72,99)(73,100)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110), (1,67)(2,68)(3,69)(4,70)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,111)(50,112)(71,98)(72,99)(73,100)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97), (1,85,92)(2,86,93)(3,87,94)(4,88,95)(5,89,96)(6,90,97)(7,81,98)(8,82,99)(9,83,100)(10,84,91)(11,111,53)(12,112,54)(13,113,55)(14,114,56)(15,115,57)(16,116,58)(17,117,59)(18,118,60)(19,119,51)(20,120,52)(21,37,45)(22,38,46)(23,39,47)(24,40,48)(25,31,49)(26,32,50)(27,33,41)(28,34,42)(29,35,43)(30,36,44)(61,109,79)(62,110,80)(63,101,71)(64,102,72)(65,103,73)(66,104,74)(67,105,75)(68,106,76)(69,107,77)(70,108,78), (1,38,67,18)(2,39,68,19)(3,40,69,20)(4,31,70,11)(5,32,61,12)(6,33,62,13)(7,34,63,14)(8,35,64,15)(9,36,65,16)(10,37,66,17)(21,104,59,84)(22,105,60,85)(23,106,51,86)(24,107,52,87)(25,108,53,88)(26,109,54,89)(27,110,55,90)(28,101,56,81)(29,102,57,82)(30,103,58,83)(41,80,113,97)(42,71,114,98)(43,72,115,99)(44,73,116,100)(45,74,117,91)(46,75,118,92)(47,76,119,93)(48,77,120,94)(49,78,111,95)(50,79,112,96) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120)], [(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(21,59),(22,60),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(71,98),(72,99),(73,100),(74,91),(75,92),(76,93),(77,94),(78,95),(79,96),(80,97),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110)], [(1,67),(2,68),(3,69),(4,70),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,113),(42,114),(43,115),(44,116),(45,117),(46,118),(47,119),(48,120),(49,111),(50,112),(71,98),(72,99),(73,100),(74,91),(75,92),(76,93),(77,94),(78,95),(79,96),(80,97)], [(1,85,92),(2,86,93),(3,87,94),(4,88,95),(5,89,96),(6,90,97),(7,81,98),(8,82,99),(9,83,100),(10,84,91),(11,111,53),(12,112,54),(13,113,55),(14,114,56),(15,115,57),(16,116,58),(17,117,59),(18,118,60),(19,119,51),(20,120,52),(21,37,45),(22,38,46),(23,39,47),(24,40,48),(25,31,49),(26,32,50),(27,33,41),(28,34,42),(29,35,43),(30,36,44),(61,109,79),(62,110,80),(63,101,71),(64,102,72),(65,103,73),(66,104,74),(67,105,75),(68,106,76),(69,107,77),(70,108,78)], [(1,38,67,18),(2,39,68,19),(3,40,69,20),(4,31,70,11),(5,32,61,12),(6,33,62,13),(7,34,63,14),(8,35,64,15),(9,36,65,16),(10,37,66,17),(21,104,59,84),(22,105,60,85),(23,106,51,86),(24,107,52,87),(25,108,53,88),(26,109,54,89),(27,110,55,90),(28,101,56,81),(29,102,57,82),(30,103,58,83),(41,80,113,97),(42,71,114,98),(43,72,115,99),(44,73,116,100),(45,74,117,91),(46,75,118,92),(47,76,119,93),(48,77,120,94),(49,78,111,95),(50,79,112,96)])

Matrix representation G ⊆ GL5(𝔽61)

600000
060000
003400
000340
000034
,
10000
01000
00100
000600
000060
,
10000
01000
006000
00010
000060
,
060000
160000
00001
00100
00010
,
5135000
2510000
000050
000500
005000

G:=sub<GL(5,GF(61))| [60,0,0,0,0,0,60,0,0,0,0,0,34,0,0,0,0,0,34,0,0,0,0,0,34],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,1,0,0,0,0,0,60],[0,1,0,0,0,60,60,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[51,25,0,0,0,35,10,0,0,0,0,0,0,0,50,0,0,0,50,0,0,0,50,0,0] >;

100 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A···4H5A5B5C5D6A6B6C10A···10L10M···10AB15A15B15C15D20A···20AF30A···30L
order1222222234···4555566610···1010···101515151520···2030···30
size1111333386···611118881···13···388886···68···8

100 irreducible representations

dim11111111222222333333
type++++-+++
imageC1C2C2C4C5C10C10C20S3Dic3D6C5×S3C5×Dic3S3×C10S4A4⋊C4C2×S4C5×S4C5×A4⋊C4C10×S4
kernelC10×A4⋊C4C5×A4⋊C4A4×C2×C10C10×A4C2×A4⋊C4A4⋊C4C22×A4C2×A4C23×C10C22×C10C22×C10C24C23C23C2×C10C10C10C22C2C2
# reps1214484161214842428168

In GAP, Magma, Sage, TeX

C_{10}\times A_4\rtimes C_4
% in TeX

G:=Group("C10xA4:C4");
// GroupNames label

G:=SmallGroup(480,1022);
// by ID

G=gap.SmallGroup(480,1022);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-3,-2,2,140,2804,10085,285,5886,475]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^2=c^2=d^3=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽