Copied to
clipboard

G = C15×C4.D4order 480 = 25·3·5

Direct product of C15 and C4.D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C15×C4.D4, C23.C60, C60.243D4, M4(2)⋊3C30, C4.9(D4×C15), (C6×D4).8C10, (C2×D4).2C30, (D4×C10).8C6, C12.58(C5×D4), C20.58(C3×D4), (D4×C30).20C2, (C5×M4(2))⋊9C6, C22.3(C2×C60), (C22×C30).1C4, (C22×C6).1C20, (C3×M4(2))⋊9C10, (C22×C10).3C12, (C15×M4(2))⋊21C2, (C2×C60).418C22, C30.126(C22⋊C4), (C2×C4).1(C2×C30), (C2×C20).59(C2×C6), (C2×C6).20(C2×C20), C2.4(C15×C22⋊C4), C6.22(C5×C22⋊C4), (C2×C30).165(C2×C4), (C2×C10).40(C2×C12), (C2×C12).59(C2×C10), C10.33(C3×C22⋊C4), SmallGroup(480,203)

Series: Derived Chief Lower central Upper central

C1C22 — C15×C4.D4
C1C2C4C2×C4C2×C20C2×C60C15×M4(2) — C15×C4.D4
C1C2C22 — C15×C4.D4
C1C30C2×C60 — C15×C4.D4

Generators and relations for C15×C4.D4
 G = < a,b,c,d | a15=b4=1, c4=b2, d2=b, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=b-1c3 >

Subgroups: 168 in 92 conjugacy classes, 48 normal (24 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C8, C2×C4, D4, C23, C10, C10, C12, C2×C6, C2×C6, C15, M4(2), C2×D4, C20, C2×C10, C2×C10, C24, C2×C12, C3×D4, C22×C6, C30, C30, C4.D4, C40, C2×C20, C5×D4, C22×C10, C3×M4(2), C6×D4, C60, C2×C30, C2×C30, C5×M4(2), D4×C10, C3×C4.D4, C120, C2×C60, D4×C15, C22×C30, C5×C4.D4, C15×M4(2), D4×C30, C15×C4.D4
Quotients: C1, C2, C3, C4, C22, C5, C6, C2×C4, D4, C10, C12, C2×C6, C15, C22⋊C4, C20, C2×C10, C2×C12, C3×D4, C30, C4.D4, C2×C20, C5×D4, C3×C22⋊C4, C60, C2×C30, C5×C22⋊C4, C3×C4.D4, C2×C60, D4×C15, C5×C4.D4, C15×C22⋊C4, C15×C4.D4

Smallest permutation representation of C15×C4.D4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 87 67 58)(2 88 68 59)(3 89 69 60)(4 90 70 46)(5 76 71 47)(6 77 72 48)(7 78 73 49)(8 79 74 50)(9 80 75 51)(10 81 61 52)(11 82 62 53)(12 83 63 54)(13 84 64 55)(14 85 65 56)(15 86 66 57)(16 112 91 44)(17 113 92 45)(18 114 93 31)(19 115 94 32)(20 116 95 33)(21 117 96 34)(22 118 97 35)(23 119 98 36)(24 120 99 37)(25 106 100 38)(26 107 101 39)(27 108 102 40)(28 109 103 41)(29 110 104 42)(30 111 105 43)
(1 22 87 35 67 97 58 118)(2 23 88 36 68 98 59 119)(3 24 89 37 69 99 60 120)(4 25 90 38 70 100 46 106)(5 26 76 39 71 101 47 107)(6 27 77 40 72 102 48 108)(7 28 78 41 73 103 49 109)(8 29 79 42 74 104 50 110)(9 30 80 43 75 105 51 111)(10 16 81 44 61 91 52 112)(11 17 82 45 62 92 53 113)(12 18 83 31 63 93 54 114)(13 19 84 32 64 94 55 115)(14 20 85 33 65 95 56 116)(15 21 86 34 66 96 57 117)
(1 97 87 35 67 22 58 118)(2 98 88 36 68 23 59 119)(3 99 89 37 69 24 60 120)(4 100 90 38 70 25 46 106)(5 101 76 39 71 26 47 107)(6 102 77 40 72 27 48 108)(7 103 78 41 73 28 49 109)(8 104 79 42 74 29 50 110)(9 105 80 43 75 30 51 111)(10 91 81 44 61 16 52 112)(11 92 82 45 62 17 53 113)(12 93 83 31 63 18 54 114)(13 94 84 32 64 19 55 115)(14 95 85 33 65 20 56 116)(15 96 86 34 66 21 57 117)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,87,67,58)(2,88,68,59)(3,89,69,60)(4,90,70,46)(5,76,71,47)(6,77,72,48)(7,78,73,49)(8,79,74,50)(9,80,75,51)(10,81,61,52)(11,82,62,53)(12,83,63,54)(13,84,64,55)(14,85,65,56)(15,86,66,57)(16,112,91,44)(17,113,92,45)(18,114,93,31)(19,115,94,32)(20,116,95,33)(21,117,96,34)(22,118,97,35)(23,119,98,36)(24,120,99,37)(25,106,100,38)(26,107,101,39)(27,108,102,40)(28,109,103,41)(29,110,104,42)(30,111,105,43), (1,22,87,35,67,97,58,118)(2,23,88,36,68,98,59,119)(3,24,89,37,69,99,60,120)(4,25,90,38,70,100,46,106)(5,26,76,39,71,101,47,107)(6,27,77,40,72,102,48,108)(7,28,78,41,73,103,49,109)(8,29,79,42,74,104,50,110)(9,30,80,43,75,105,51,111)(10,16,81,44,61,91,52,112)(11,17,82,45,62,92,53,113)(12,18,83,31,63,93,54,114)(13,19,84,32,64,94,55,115)(14,20,85,33,65,95,56,116)(15,21,86,34,66,96,57,117), (1,97,87,35,67,22,58,118)(2,98,88,36,68,23,59,119)(3,99,89,37,69,24,60,120)(4,100,90,38,70,25,46,106)(5,101,76,39,71,26,47,107)(6,102,77,40,72,27,48,108)(7,103,78,41,73,28,49,109)(8,104,79,42,74,29,50,110)(9,105,80,43,75,30,51,111)(10,91,81,44,61,16,52,112)(11,92,82,45,62,17,53,113)(12,93,83,31,63,18,54,114)(13,94,84,32,64,19,55,115)(14,95,85,33,65,20,56,116)(15,96,86,34,66,21,57,117)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,87,67,58)(2,88,68,59)(3,89,69,60)(4,90,70,46)(5,76,71,47)(6,77,72,48)(7,78,73,49)(8,79,74,50)(9,80,75,51)(10,81,61,52)(11,82,62,53)(12,83,63,54)(13,84,64,55)(14,85,65,56)(15,86,66,57)(16,112,91,44)(17,113,92,45)(18,114,93,31)(19,115,94,32)(20,116,95,33)(21,117,96,34)(22,118,97,35)(23,119,98,36)(24,120,99,37)(25,106,100,38)(26,107,101,39)(27,108,102,40)(28,109,103,41)(29,110,104,42)(30,111,105,43), (1,22,87,35,67,97,58,118)(2,23,88,36,68,98,59,119)(3,24,89,37,69,99,60,120)(4,25,90,38,70,100,46,106)(5,26,76,39,71,101,47,107)(6,27,77,40,72,102,48,108)(7,28,78,41,73,103,49,109)(8,29,79,42,74,104,50,110)(9,30,80,43,75,105,51,111)(10,16,81,44,61,91,52,112)(11,17,82,45,62,92,53,113)(12,18,83,31,63,93,54,114)(13,19,84,32,64,94,55,115)(14,20,85,33,65,95,56,116)(15,21,86,34,66,96,57,117), (1,97,87,35,67,22,58,118)(2,98,88,36,68,23,59,119)(3,99,89,37,69,24,60,120)(4,100,90,38,70,25,46,106)(5,101,76,39,71,26,47,107)(6,102,77,40,72,27,48,108)(7,103,78,41,73,28,49,109)(8,104,79,42,74,29,50,110)(9,105,80,43,75,30,51,111)(10,91,81,44,61,16,52,112)(11,92,82,45,62,17,53,113)(12,93,83,31,63,18,54,114)(13,94,84,32,64,19,55,115)(14,95,85,33,65,20,56,116)(15,96,86,34,66,21,57,117) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,87,67,58),(2,88,68,59),(3,89,69,60),(4,90,70,46),(5,76,71,47),(6,77,72,48),(7,78,73,49),(8,79,74,50),(9,80,75,51),(10,81,61,52),(11,82,62,53),(12,83,63,54),(13,84,64,55),(14,85,65,56),(15,86,66,57),(16,112,91,44),(17,113,92,45),(18,114,93,31),(19,115,94,32),(20,116,95,33),(21,117,96,34),(22,118,97,35),(23,119,98,36),(24,120,99,37),(25,106,100,38),(26,107,101,39),(27,108,102,40),(28,109,103,41),(29,110,104,42),(30,111,105,43)], [(1,22,87,35,67,97,58,118),(2,23,88,36,68,98,59,119),(3,24,89,37,69,99,60,120),(4,25,90,38,70,100,46,106),(5,26,76,39,71,101,47,107),(6,27,77,40,72,102,48,108),(7,28,78,41,73,103,49,109),(8,29,79,42,74,104,50,110),(9,30,80,43,75,105,51,111),(10,16,81,44,61,91,52,112),(11,17,82,45,62,92,53,113),(12,18,83,31,63,93,54,114),(13,19,84,32,64,94,55,115),(14,20,85,33,65,95,56,116),(15,21,86,34,66,96,57,117)], [(1,97,87,35,67,22,58,118),(2,98,88,36,68,23,59,119),(3,99,89,37,69,24,60,120),(4,100,90,38,70,25,46,106),(5,101,76,39,71,26,47,107),(6,102,77,40,72,27,48,108),(7,103,78,41,73,28,49,109),(8,104,79,42,74,29,50,110),(9,105,80,43,75,30,51,111),(10,91,81,44,61,16,52,112),(11,92,82,45,62,17,53,113),(12,93,83,31,63,18,54,114),(13,94,84,32,64,19,55,115),(14,95,85,33,65,20,56,116),(15,96,86,34,66,21,57,117)]])

165 conjugacy classes

class 1 2A2B2C2D3A3B4A4B5A5B5C5D6A6B6C6D6E6F6G6H8A8B8C8D10A10B10C10D10E10F10G10H10I···10P12A12B12C12D15A···15H20A···20H24A···24H30A···30H30I···30P30Q···30AF40A···40P60A···60P120A···120AF
order1222233445555666666668888101010101010101010···101212121215···1520···2024···2430···3030···3030···3040···4060···60120···120
size1124411221111112244444444111122224···422221···12···24···41···12···24···44···42···24···4

165 irreducible representations

dim111111111111111122224444
type+++++
imageC1C2C2C3C4C5C6C6C10C10C12C15C20C30C30C60D4C3×D4C5×D4D4×C15C4.D4C3×C4.D4C5×C4.D4C15×C4.D4
kernelC15×C4.D4C15×M4(2)D4×C30C5×C4.D4C22×C30C3×C4.D4C5×M4(2)D4×C10C3×M4(2)C6×D4C22×C10C4.D4C22×C6M4(2)C2×D4C23C60C20C12C4C15C5C3C1
# reps1212444284881616832248161248

Matrix representation of C15×C4.D4 in GL8(𝔽241)

150000000
015000000
008700000
000870000
00001000
00000100
00000010
00000001
,
2400000000
0240000000
00100000
00010000
00000100
0000240000
000021712901
0000129242400
,
01000000
10000000
0001770000
0017700000
00001061532390
000010515202
00003495135153
0000715710589
,
0240000000
10000000
000640000
0017700000
00001061532390
0000136890239
000011621613588
000012625105152

G:=sub<GL(8,GF(241))| [15,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,87,0,0,0,0,0,0,0,0,87,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,240,217,129,0,0,0,0,1,0,129,24,0,0,0,0,0,0,0,240,0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,177,0,0,0,0,0,0,177,0,0,0,0,0,0,0,0,0,106,105,34,71,0,0,0,0,153,152,95,57,0,0,0,0,239,0,135,105,0,0,0,0,0,2,153,89],[0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,0,177,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,0,106,136,116,126,0,0,0,0,153,89,216,25,0,0,0,0,239,0,135,105,0,0,0,0,0,239,88,152] >;

C15×C4.D4 in GAP, Magma, Sage, TeX

C_{15}\times C_4.D_4
% in TeX

G:=Group("C15xC4.D4");
// GroupNames label

G:=SmallGroup(480,203);
// by ID

G=gap.SmallGroup(480,203);
# by ID

G:=PCGroup([7,-2,-2,-3,-5,-2,-2,-2,840,869,10504,7572,124]);
// Polycyclic

G:=Group<a,b,c,d|a^15=b^4=1,c^4=b^2,d^2=b,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

׿
×
𝔽