Copied to
clipboard

?

G = C2×A4×Dic5order 480 = 25·3·5

Direct product of C2, A4 and Dic5

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×A4×Dic5, C102(C4×A4), (C10×A4)⋊4C4, C24.(C3×D5), (C23×C10).C6, (C23×Dic5)⋊C3, C22⋊(C6×Dic5), C22.9(D5×A4), (C22×C10)⋊2C12, (C2×A4).16D10, (C22×A4).2D5, C232(C3×Dic5), C23.13(C6×D5), C10.10(C22×A4), (C22×Dic5)⋊3C6, (C10×A4).16C22, C53(C2×C4×A4), C2.2(C2×D5×A4), (A4×C2×C10).2C2, (C5×A4)⋊11(C2×C4), (C2×C10)⋊4(C2×C12), (C2×C10).14(C2×A4), (C22×C10).4(C2×C6), SmallGroup(480,1044)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×A4×Dic5
C1C5C2×C10C22×C10C10×A4A4×Dic5 — C2×A4×Dic5
C2×C10 — C2×A4×Dic5

Subgroups: 580 in 132 conjugacy classes, 39 normal (21 characteristic)
C1, C2, C2 [×2], C2 [×4], C3, C4 [×4], C22 [×2], C22 [×11], C5, C6 [×3], C2×C4 [×10], C23, C23 [×2], C23 [×4], C10, C10 [×2], C10 [×4], C12 [×2], A4, C2×C6, C15, C22×C4 [×6], C24, Dic5 [×2], Dic5 [×2], C2×C10 [×2], C2×C10 [×11], C2×C12, C2×A4, C2×A4 [×2], C30 [×3], C23×C4, C2×Dic5, C2×Dic5 [×9], C22×C10, C22×C10 [×2], C22×C10 [×4], C4×A4 [×2], C22×A4, C3×Dic5 [×2], C5×A4, C2×C30, C22×Dic5 [×2], C22×Dic5 [×4], C23×C10, C2×C4×A4, C6×Dic5, C10×A4, C10×A4 [×2], C23×Dic5, A4×Dic5 [×2], A4×C2×C10, C2×A4×Dic5

Quotients:
C1, C2 [×3], C3, C4 [×2], C22, C6 [×3], C2×C4, D5, C12 [×2], A4, C2×C6, Dic5 [×2], D10, C2×C12, C2×A4 [×3], C3×D5, C2×Dic5, C4×A4 [×2], C22×A4, C3×Dic5 [×2], C6×D5, C2×C4×A4, C6×Dic5, D5×A4, A4×Dic5 [×2], C2×D5×A4, C2×A4×Dic5

Generators and relations
 G = < a,b,c,d,e,f | a2=b2=c2=d3=e10=1, f2=e5, ab=ba, ac=ca, ad=da, ae=ea, af=fa, dbd-1=bc=cb, be=eb, bf=fb, dcd-1=b, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Smallest permutation representation
On 120 points
Generators in S120
(1 28)(2 29)(3 30)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 115)(12 116)(13 117)(14 118)(15 119)(16 120)(17 111)(18 112)(19 113)(20 114)(31 49)(32 50)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(51 66)(52 67)(53 68)(54 69)(55 70)(56 61)(57 62)(58 63)(59 64)(60 65)(71 88)(72 89)(73 90)(74 81)(75 82)(76 83)(77 84)(78 85)(79 86)(80 87)(91 108)(92 109)(93 110)(94 101)(95 102)(96 103)(97 104)(98 105)(99 106)(100 107)
(1 28)(2 29)(3 30)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(31 49)(32 50)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(71 88)(72 89)(73 90)(74 81)(75 82)(76 83)(77 84)(78 85)(79 86)(80 87)(91 108)(92 109)(93 110)(94 101)(95 102)(96 103)(97 104)(98 105)(99 106)(100 107)
(1 28)(2 29)(3 30)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 115)(12 116)(13 117)(14 118)(15 119)(16 120)(17 111)(18 112)(19 113)(20 114)(51 66)(52 67)(53 68)(54 69)(55 70)(56 61)(57 62)(58 63)(59 64)(60 65)(71 88)(72 89)(73 90)(74 81)(75 82)(76 83)(77 84)(78 85)(79 86)(80 87)
(1 60 40)(2 51 31)(3 52 32)(4 53 33)(5 54 34)(6 55 35)(7 56 36)(8 57 37)(9 58 38)(10 59 39)(11 102 82)(12 103 83)(13 104 84)(14 105 85)(15 106 86)(16 107 87)(17 108 88)(18 109 89)(19 110 90)(20 101 81)(21 68 41)(22 69 42)(23 70 43)(24 61 44)(25 62 45)(26 63 46)(27 64 47)(28 65 48)(29 66 49)(30 67 50)(71 111 91)(72 112 92)(73 113 93)(74 114 94)(75 115 95)(76 116 96)(77 117 97)(78 118 98)(79 119 99)(80 120 100)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)
(1 75 6 80)(2 74 7 79)(3 73 8 78)(4 72 9 77)(5 71 10 76)(11 70 16 65)(12 69 17 64)(13 68 18 63)(14 67 19 62)(15 66 20 61)(21 89 26 84)(22 88 27 83)(23 87 28 82)(24 86 29 81)(25 85 30 90)(31 94 36 99)(32 93 37 98)(33 92 38 97)(34 91 39 96)(35 100 40 95)(41 109 46 104)(42 108 47 103)(43 107 48 102)(44 106 49 101)(45 105 50 110)(51 114 56 119)(52 113 57 118)(53 112 58 117)(54 111 59 116)(55 120 60 115)

G:=sub<Sym(120)| (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,115)(12,116)(13,117)(14,118)(15,119)(16,120)(17,111)(18,112)(19,113)(20,114)(31,49)(32,50)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(51,66)(52,67)(53,68)(54,69)(55,70)(56,61)(57,62)(58,63)(59,64)(60,65)(71,88)(72,89)(73,90)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87)(91,108)(92,109)(93,110)(94,101)(95,102)(96,103)(97,104)(98,105)(99,106)(100,107), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(31,49)(32,50)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(71,88)(72,89)(73,90)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87)(91,108)(92,109)(93,110)(94,101)(95,102)(96,103)(97,104)(98,105)(99,106)(100,107), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,115)(12,116)(13,117)(14,118)(15,119)(16,120)(17,111)(18,112)(19,113)(20,114)(51,66)(52,67)(53,68)(54,69)(55,70)(56,61)(57,62)(58,63)(59,64)(60,65)(71,88)(72,89)(73,90)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87), (1,60,40)(2,51,31)(3,52,32)(4,53,33)(5,54,34)(6,55,35)(7,56,36)(8,57,37)(9,58,38)(10,59,39)(11,102,82)(12,103,83)(13,104,84)(14,105,85)(15,106,86)(16,107,87)(17,108,88)(18,109,89)(19,110,90)(20,101,81)(21,68,41)(22,69,42)(23,70,43)(24,61,44)(25,62,45)(26,63,46)(27,64,47)(28,65,48)(29,66,49)(30,67,50)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,75,6,80)(2,74,7,79)(3,73,8,78)(4,72,9,77)(5,71,10,76)(11,70,16,65)(12,69,17,64)(13,68,18,63)(14,67,19,62)(15,66,20,61)(21,89,26,84)(22,88,27,83)(23,87,28,82)(24,86,29,81)(25,85,30,90)(31,94,36,99)(32,93,37,98)(33,92,38,97)(34,91,39,96)(35,100,40,95)(41,109,46,104)(42,108,47,103)(43,107,48,102)(44,106,49,101)(45,105,50,110)(51,114,56,119)(52,113,57,118)(53,112,58,117)(54,111,59,116)(55,120,60,115)>;

G:=Group( (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,115)(12,116)(13,117)(14,118)(15,119)(16,120)(17,111)(18,112)(19,113)(20,114)(31,49)(32,50)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(51,66)(52,67)(53,68)(54,69)(55,70)(56,61)(57,62)(58,63)(59,64)(60,65)(71,88)(72,89)(73,90)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87)(91,108)(92,109)(93,110)(94,101)(95,102)(96,103)(97,104)(98,105)(99,106)(100,107), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(31,49)(32,50)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(71,88)(72,89)(73,90)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87)(91,108)(92,109)(93,110)(94,101)(95,102)(96,103)(97,104)(98,105)(99,106)(100,107), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,115)(12,116)(13,117)(14,118)(15,119)(16,120)(17,111)(18,112)(19,113)(20,114)(51,66)(52,67)(53,68)(54,69)(55,70)(56,61)(57,62)(58,63)(59,64)(60,65)(71,88)(72,89)(73,90)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87), (1,60,40)(2,51,31)(3,52,32)(4,53,33)(5,54,34)(6,55,35)(7,56,36)(8,57,37)(9,58,38)(10,59,39)(11,102,82)(12,103,83)(13,104,84)(14,105,85)(15,106,86)(16,107,87)(17,108,88)(18,109,89)(19,110,90)(20,101,81)(21,68,41)(22,69,42)(23,70,43)(24,61,44)(25,62,45)(26,63,46)(27,64,47)(28,65,48)(29,66,49)(30,67,50)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,75,6,80)(2,74,7,79)(3,73,8,78)(4,72,9,77)(5,71,10,76)(11,70,16,65)(12,69,17,64)(13,68,18,63)(14,67,19,62)(15,66,20,61)(21,89,26,84)(22,88,27,83)(23,87,28,82)(24,86,29,81)(25,85,30,90)(31,94,36,99)(32,93,37,98)(33,92,38,97)(34,91,39,96)(35,100,40,95)(41,109,46,104)(42,108,47,103)(43,107,48,102)(44,106,49,101)(45,105,50,110)(51,114,56,119)(52,113,57,118)(53,112,58,117)(54,111,59,116)(55,120,60,115) );

G=PermutationGroup([(1,28),(2,29),(3,30),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,115),(12,116),(13,117),(14,118),(15,119),(16,120),(17,111),(18,112),(19,113),(20,114),(31,49),(32,50),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(51,66),(52,67),(53,68),(54,69),(55,70),(56,61),(57,62),(58,63),(59,64),(60,65),(71,88),(72,89),(73,90),(74,81),(75,82),(76,83),(77,84),(78,85),(79,86),(80,87),(91,108),(92,109),(93,110),(94,101),(95,102),(96,103),(97,104),(98,105),(99,106),(100,107)], [(1,28),(2,29),(3,30),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(31,49),(32,50),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(71,88),(72,89),(73,90),(74,81),(75,82),(76,83),(77,84),(78,85),(79,86),(80,87),(91,108),(92,109),(93,110),(94,101),(95,102),(96,103),(97,104),(98,105),(99,106),(100,107)], [(1,28),(2,29),(3,30),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,115),(12,116),(13,117),(14,118),(15,119),(16,120),(17,111),(18,112),(19,113),(20,114),(51,66),(52,67),(53,68),(54,69),(55,70),(56,61),(57,62),(58,63),(59,64),(60,65),(71,88),(72,89),(73,90),(74,81),(75,82),(76,83),(77,84),(78,85),(79,86),(80,87)], [(1,60,40),(2,51,31),(3,52,32),(4,53,33),(5,54,34),(6,55,35),(7,56,36),(8,57,37),(9,58,38),(10,59,39),(11,102,82),(12,103,83),(13,104,84),(14,105,85),(15,106,86),(16,107,87),(17,108,88),(18,109,89),(19,110,90),(20,101,81),(21,68,41),(22,69,42),(23,70,43),(24,61,44),(25,62,45),(26,63,46),(27,64,47),(28,65,48),(29,66,49),(30,67,50),(71,111,91),(72,112,92),(73,113,93),(74,114,94),(75,115,95),(76,116,96),(77,117,97),(78,118,98),(79,119,99),(80,120,100)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120)], [(1,75,6,80),(2,74,7,79),(3,73,8,78),(4,72,9,77),(5,71,10,76),(11,70,16,65),(12,69,17,64),(13,68,18,63),(14,67,19,62),(15,66,20,61),(21,89,26,84),(22,88,27,83),(23,87,28,82),(24,86,29,81),(25,85,30,90),(31,94,36,99),(32,93,37,98),(33,92,38,97),(34,91,39,96),(35,100,40,95),(41,109,46,104),(42,108,47,103),(43,107,48,102),(44,106,49,101),(45,105,50,110),(51,114,56,119),(52,113,57,118),(53,112,58,117),(54,111,59,116),(55,120,60,115)])

Matrix representation G ⊆ GL7(𝔽61)

60000000
06000000
00600000
00060000
0000100
0000010
0000001
,
1000000
0100000
0010000
0001000
0000100
00000600
000048060
,
1000000
0100000
0010000
0001000
00006000
0000010
000004760
,
47000000
04700000
0010000
0001000
0000484759
00006000
00000013
,
446000000
1000000
00171000
00600000
0000100
0000010
0000001
,
375300000
342400000
004134000
00820000
0000100
0000010
0000001

G:=sub<GL(7,GF(61))| [60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,48,0,0,0,0,0,60,0,0,0,0,0,0,0,60],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,47,0,0,0,0,0,0,60],[47,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,48,60,0,0,0,0,0,47,0,0,0,0,0,0,59,0,13],[44,1,0,0,0,0,0,60,0,0,0,0,0,0,0,0,17,60,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[37,34,0,0,0,0,0,53,24,0,0,0,0,0,0,0,41,8,0,0,0,0,0,34,20,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1] >;

64 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B4C4D4E4F4G4H5A5B6A···6F10A···10F10G···10N12A···12H15A15B15C15D30A···30L
order122222223344444444556···610···1010···1012···121515151530···30
size1111333344555515151515224···42···26···620···2088888···8

64 irreducible representations

dim111111112222223333666
type++++-+++++-+
imageC1C2C2C3C4C6C6C12D5Dic5D10C3×D5C3×Dic5C6×D5A4C2×A4C2×A4C4×A4D5×A4A4×Dic5C2×D5×A4
kernelC2×A4×Dic5A4×Dic5A4×C2×C10C23×Dic5C10×A4C22×Dic5C23×C10C22×C10C22×A4C2×A4C2×A4C24C23C23C2×Dic5Dic5C2×C10C10C22C2C2
# reps121244282424841214242

In GAP, Magma, Sage, TeX

C_2\times A_4\times Dic_5
% in TeX

G:=Group("C2xA4xDic5");
// GroupNames label

G:=SmallGroup(480,1044);
// by ID

G=gap.SmallGroup(480,1044);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-5,84,648,271,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^3=e^10=1,f^2=e^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,d*b*d^-1=b*c=c*b,b*e=e*b,b*f=f*b,d*c*d^-1=b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽