Copied to
clipboard

G = D4⋊D15order 240 = 24·3·5

The semidirect product of D4 and D15 acting via D15/C15=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4⋊D15, C157D8, D602C2, C20.9D6, C4.1D30, C30.34D4, C12.9D10, C60.1C22, C53(D4⋊S3), C33(D4⋊D5), (C5×D4)⋊1S3, (C3×D4)⋊1D5, C153C81C2, (D4×C15)⋊1C2, C6.16(C5⋊D4), C2.4(C157D4), C10.16(C3⋊D4), SmallGroup(240,76)

Series: Derived Chief Lower central Upper central

C1C60 — D4⋊D15
C1C5C15C30C60D60 — D4⋊D15
C15C30C60 — D4⋊D15
C1C2C4D4

Generators and relations for D4⋊D15
 G = < a,b,c,d | a4=b2=c15=d2=1, bab=dad=a-1, ac=ca, bc=cb, dbd=ab, dcd=c-1 >

4C2
60C2
2C22
30C22
4C6
20S3
4C10
12D5
15D4
15C8
2C2×C6
10D6
2C2×C10
6D10
4C30
4D15
15D8
5D12
5C3⋊C8
3C52C8
3D20
2D30
2C2×C30
5D4⋊S3
3D4⋊D5

Smallest permutation representation of D4⋊D15
On 120 points
Generators in S120
(1 54 24 43)(2 55 25 44)(3 56 26 45)(4 57 27 31)(5 58 28 32)(6 59 29 33)(7 60 30 34)(8 46 16 35)(9 47 17 36)(10 48 18 37)(11 49 19 38)(12 50 20 39)(13 51 21 40)(14 52 22 41)(15 53 23 42)(61 95 80 114)(62 96 81 115)(63 97 82 116)(64 98 83 117)(65 99 84 118)(66 100 85 119)(67 101 86 120)(68 102 87 106)(69 103 88 107)(70 104 89 108)(71 105 90 109)(72 91 76 110)(73 92 77 111)(74 93 78 112)(75 94 79 113)
(1 114)(2 115)(3 116)(4 117)(5 118)(6 119)(7 120)(8 106)(9 107)(10 108)(11 109)(12 110)(13 111)(14 112)(15 113)(16 102)(17 103)(18 104)(19 105)(20 91)(21 92)(22 93)(23 94)(24 95)(25 96)(26 97)(27 98)(28 99)(29 100)(30 101)(31 64)(32 65)(33 66)(34 67)(35 68)(36 69)(37 70)(38 71)(39 72)(40 73)(41 74)(42 75)(43 61)(44 62)(45 63)(46 87)(47 88)(48 89)(49 90)(50 76)(51 77)(52 78)(53 79)(54 80)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(23 24)(31 50)(32 49)(33 48)(34 47)(35 46)(36 60)(37 59)(38 58)(39 57)(40 56)(41 55)(42 54)(43 53)(44 52)(45 51)(61 94)(62 93)(63 92)(64 91)(65 105)(66 104)(67 103)(68 102)(69 101)(70 100)(71 99)(72 98)(73 97)(74 96)(75 95)(76 117)(77 116)(78 115)(79 114)(80 113)(81 112)(82 111)(83 110)(84 109)(85 108)(86 107)(87 106)(88 120)(89 119)(90 118)

G:=sub<Sym(120)| (1,54,24,43)(2,55,25,44)(3,56,26,45)(4,57,27,31)(5,58,28,32)(6,59,29,33)(7,60,30,34)(8,46,16,35)(9,47,17,36)(10,48,18,37)(11,49,19,38)(12,50,20,39)(13,51,21,40)(14,52,22,41)(15,53,23,42)(61,95,80,114)(62,96,81,115)(63,97,82,116)(64,98,83,117)(65,99,84,118)(66,100,85,119)(67,101,86,120)(68,102,87,106)(69,103,88,107)(70,104,89,108)(71,105,90,109)(72,91,76,110)(73,92,77,111)(74,93,78,112)(75,94,79,113), (1,114)(2,115)(3,116)(4,117)(5,118)(6,119)(7,120)(8,106)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,113)(16,102)(17,103)(18,104)(19,105)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,101)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75)(43,61)(44,62)(45,63)(46,87)(47,88)(48,89)(49,90)(50,76)(51,77)(52,78)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24)(31,50)(32,49)(33,48)(34,47)(35,46)(36,60)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(61,94)(62,93)(63,92)(64,91)(65,105)(66,104)(67,103)(68,102)(69,101)(70,100)(71,99)(72,98)(73,97)(74,96)(75,95)(76,117)(77,116)(78,115)(79,114)(80,113)(81,112)(82,111)(83,110)(84,109)(85,108)(86,107)(87,106)(88,120)(89,119)(90,118)>;

G:=Group( (1,54,24,43)(2,55,25,44)(3,56,26,45)(4,57,27,31)(5,58,28,32)(6,59,29,33)(7,60,30,34)(8,46,16,35)(9,47,17,36)(10,48,18,37)(11,49,19,38)(12,50,20,39)(13,51,21,40)(14,52,22,41)(15,53,23,42)(61,95,80,114)(62,96,81,115)(63,97,82,116)(64,98,83,117)(65,99,84,118)(66,100,85,119)(67,101,86,120)(68,102,87,106)(69,103,88,107)(70,104,89,108)(71,105,90,109)(72,91,76,110)(73,92,77,111)(74,93,78,112)(75,94,79,113), (1,114)(2,115)(3,116)(4,117)(5,118)(6,119)(7,120)(8,106)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,113)(16,102)(17,103)(18,104)(19,105)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,101)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75)(43,61)(44,62)(45,63)(46,87)(47,88)(48,89)(49,90)(50,76)(51,77)(52,78)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24)(31,50)(32,49)(33,48)(34,47)(35,46)(36,60)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(61,94)(62,93)(63,92)(64,91)(65,105)(66,104)(67,103)(68,102)(69,101)(70,100)(71,99)(72,98)(73,97)(74,96)(75,95)(76,117)(77,116)(78,115)(79,114)(80,113)(81,112)(82,111)(83,110)(84,109)(85,108)(86,107)(87,106)(88,120)(89,119)(90,118) );

G=PermutationGroup([[(1,54,24,43),(2,55,25,44),(3,56,26,45),(4,57,27,31),(5,58,28,32),(6,59,29,33),(7,60,30,34),(8,46,16,35),(9,47,17,36),(10,48,18,37),(11,49,19,38),(12,50,20,39),(13,51,21,40),(14,52,22,41),(15,53,23,42),(61,95,80,114),(62,96,81,115),(63,97,82,116),(64,98,83,117),(65,99,84,118),(66,100,85,119),(67,101,86,120),(68,102,87,106),(69,103,88,107),(70,104,89,108),(71,105,90,109),(72,91,76,110),(73,92,77,111),(74,93,78,112),(75,94,79,113)], [(1,114),(2,115),(3,116),(4,117),(5,118),(6,119),(7,120),(8,106),(9,107),(10,108),(11,109),(12,110),(13,111),(14,112),(15,113),(16,102),(17,103),(18,104),(19,105),(20,91),(21,92),(22,93),(23,94),(24,95),(25,96),(26,97),(27,98),(28,99),(29,100),(30,101),(31,64),(32,65),(33,66),(34,67),(35,68),(36,69),(37,70),(38,71),(39,72),(40,73),(41,74),(42,75),(43,61),(44,62),(45,63),(46,87),(47,88),(48,89),(49,90),(50,76),(51,77),(52,78),(53,79),(54,80),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(23,24),(31,50),(32,49),(33,48),(34,47),(35,46),(36,60),(37,59),(38,58),(39,57),(40,56),(41,55),(42,54),(43,53),(44,52),(45,51),(61,94),(62,93),(63,92),(64,91),(65,105),(66,104),(67,103),(68,102),(69,101),(70,100),(71,99),(72,98),(73,97),(74,96),(75,95),(76,117),(77,116),(78,115),(79,114),(80,113),(81,112),(82,111),(83,110),(84,109),(85,108),(86,107),(87,106),(88,120),(89,119),(90,118)]])

D4⋊D15 is a maximal subgroup of
D5×D4⋊S3  Dic103D6  S3×D4⋊D5  D60.C22  D20.9D6  C60.16C23  C60.19C23  D12.9D10  D8×D15  D8⋊D15  Q83D30  D4.5D30  D4.D30  D4⋊D30  D4.8D30
D4⋊D15 is a maximal quotient of
C60.1Q8  D609C4  C157D16  D8.D15  C8.6D30  C157Q32  D4⋊Dic15

42 conjugacy classes

class 1 2A2B2C 3  4 5A5B6A6B6C8A8B10A10B10C10D10E10F 12 15A15B15C15D20A20B30A30B30C30D30E···30L60A60B60C60D
order1222345566688101010101010121515151520203030303030···3060606060
size1146022222443030224444422224422224···44444

42 irreducible representations

dim111122222222222444
type+++++++++++++++
imageC1C2C2C2S3D4D5D6D8D10C3⋊D4D15C5⋊D4D30C157D4D4⋊S3D4⋊D5D4⋊D15
kernelD4⋊D15C153C8D60D4×C15C5×D4C30C3×D4C20C15C12C10D4C6C4C2C5C3C1
# reps111111212224448124

Matrix representation of D4⋊D15 in GL4(𝔽241) generated by

240000
024000
001192
00123240
,
764900
19216500
000184
00930
,
1488000
16113100
0010
0001
,
9316100
8414800
0010
00123240
G:=sub<GL(4,GF(241))| [240,0,0,0,0,240,0,0,0,0,1,123,0,0,192,240],[76,192,0,0,49,165,0,0,0,0,0,93,0,0,184,0],[148,161,0,0,80,131,0,0,0,0,1,0,0,0,0,1],[93,84,0,0,161,148,0,0,0,0,1,123,0,0,0,240] >;

D4⋊D15 in GAP, Magma, Sage, TeX

D_4\rtimes D_{15}
% in TeX

G:=Group("D4:D15");
// GroupNames label

G:=SmallGroup(240,76);
// by ID

G=gap.SmallGroup(240,76);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,73,218,116,50,964,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^15=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D4⋊D15 in TeX

׿
×
𝔽