p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4.10D8, C4.5Q16, C4.6SD16, C42.4C22, C4⋊C4.2C4, C4⋊C8.2C2, C4⋊Q8.1C2, (C2×C4).109D4, C2.5(D4⋊C4), C2.4(Q8⋊C4), C2.4(C4.10D4), C22.40(C22⋊C4), (C2×C4).13(C2×C4), SmallGroup(64,13)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4.10D8
G = < a,b,c | a4=b8=1, c2=bab-1=a-1, ac=ca, cbc-1=ab-1 >
Character table of C4.10D8
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -i | -i | i | i | -i | i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | i | i | -i | -i | i | -i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | i | -i | i | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | i | -i | i | -i | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -√2 | -√2 | 0 | 0 | √2 | √2 | 0 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | √2 | √2 | 0 | 0 | -√2 | -√2 | 0 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√2 | 0 | 0 | √2 | √2 | 0 | 0 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √2 | 0 | 0 | -√2 | -√2 | 0 | 0 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | 0 | 0 | -√-2 | √-2 | 0 | complex lifted from SD16 |
ρ16 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | 0 | 0 | √-2 | -√-2 | 0 | complex lifted from SD16 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | √-2 | 0 | 0 | √-2 | -√-2 | 0 | 0 | -√-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -√-2 | 0 | 0 | -√-2 | √-2 | 0 | 0 | √-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C4.10D4, Schur index 2 |
(1 25 11 45)(2 46 12 26)(3 27 13 47)(4 48 14 28)(5 29 15 41)(6 42 16 30)(7 31 9 43)(8 44 10 32)(17 35 61 55)(18 56 62 36)(19 37 63 49)(20 50 64 38)(21 39 57 51)(22 52 58 40)(23 33 59 53)(24 54 60 34)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 52 45 22 11 40 25 58)(2 21 26 51 12 57 46 39)(3 50 47 20 13 38 27 64)(4 19 28 49 14 63 48 37)(5 56 41 18 15 36 29 62)(6 17 30 55 16 61 42 35)(7 54 43 24 9 34 31 60)(8 23 32 53 10 59 44 33)
G:=sub<Sym(64)| (1,25,11,45)(2,46,12,26)(3,27,13,47)(4,48,14,28)(5,29,15,41)(6,42,16,30)(7,31,9,43)(8,44,10,32)(17,35,61,55)(18,56,62,36)(19,37,63,49)(20,50,64,38)(21,39,57,51)(22,52,58,40)(23,33,59,53)(24,54,60,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,52,45,22,11,40,25,58)(2,21,26,51,12,57,46,39)(3,50,47,20,13,38,27,64)(4,19,28,49,14,63,48,37)(5,56,41,18,15,36,29,62)(6,17,30,55,16,61,42,35)(7,54,43,24,9,34,31,60)(8,23,32,53,10,59,44,33)>;
G:=Group( (1,25,11,45)(2,46,12,26)(3,27,13,47)(4,48,14,28)(5,29,15,41)(6,42,16,30)(7,31,9,43)(8,44,10,32)(17,35,61,55)(18,56,62,36)(19,37,63,49)(20,50,64,38)(21,39,57,51)(22,52,58,40)(23,33,59,53)(24,54,60,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,52,45,22,11,40,25,58)(2,21,26,51,12,57,46,39)(3,50,47,20,13,38,27,64)(4,19,28,49,14,63,48,37)(5,56,41,18,15,36,29,62)(6,17,30,55,16,61,42,35)(7,54,43,24,9,34,31,60)(8,23,32,53,10,59,44,33) );
G=PermutationGroup([[(1,25,11,45),(2,46,12,26),(3,27,13,47),(4,48,14,28),(5,29,15,41),(6,42,16,30),(7,31,9,43),(8,44,10,32),(17,35,61,55),(18,56,62,36),(19,37,63,49),(20,50,64,38),(21,39,57,51),(22,52,58,40),(23,33,59,53),(24,54,60,34)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,52,45,22,11,40,25,58),(2,21,26,51,12,57,46,39),(3,50,47,20,13,38,27,64),(4,19,28,49,14,63,48,37),(5,56,41,18,15,36,29,62),(6,17,30,55,16,61,42,35),(7,54,43,24,9,34,31,60),(8,23,32,53,10,59,44,33)]])
C4.10D8 is a maximal subgroup of
C42.409D4 C42.410D4 C42.412D4 C42.414D4 C42.78D4 C42.416D4 C42.79D4 C42.81D4 C42.417D4 C42.418D4 C42.83D4 C42.84D4 C42.86D4 C42.88D4 D4⋊3D8 Q8⋊6SD16 Q8⋊3D8 C42.189C23 D4.3Q16 Q8⋊4Q16 D4⋊4Q16 Q8⋊4SD16 D4⋊4SD16 Dic5.D8
C4p.D8: C8.28D8 C8.D8 C12.47D8 C12.2D8 C12.10D8 C20.47D8 C20.2D8 C20.10D8 ...
C2.(D4.pD4): D4.SD16 Q8.Q16 C42.199C23 D4.7D8 C42.211C23 C42.213C23 Q8.SD16 C8⋊8D8 ...
C4.10D8 is a maximal quotient of
C4⋊C4⋊C8 C42.8Q8 Dic5.D8
C4.D8p: C4.10D16 C12.2D8 C20.2D8 C28.2D8 ...
C4p.Q16: C8.16Q16 C4.6Q32 C12.47D8 C12.10D8 C20.47D8 C20.10D8 C28.47D8 C28.10D8 ...
Matrix representation of C4.10D8 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 2 |
0 | 0 | 16 | 1 |
3 | 3 | 0 | 0 |
14 | 3 | 0 | 0 |
0 | 0 | 16 | 2 |
0 | 0 | 0 | 1 |
4 | 11 | 0 | 0 |
11 | 13 | 0 | 0 |
0 | 0 | 0 | 7 |
0 | 0 | 5 | 7 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,16,16,0,0,2,1],[3,14,0,0,3,3,0,0,0,0,16,0,0,0,2,1],[4,11,0,0,11,13,0,0,0,0,0,5,0,0,7,7] >;
C4.10D8 in GAP, Magma, Sage, TeX
C_4._{10}D_8
% in TeX
G:=Group("C4.10D8");
// GroupNames label
G:=SmallGroup(64,13);
// by ID
G=gap.SmallGroup(64,13);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,2,48,73,103,362,332,158,681,165]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=1,c^2=b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a*b^-1>;
// generators/relations
Export
Subgroup lattice of C4.10D8 in TeX
Character table of C4.10D8 in TeX