p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4.3D4, C8.23D4, Q8.3D4, M4(2).3C22, C8○D4⋊1C2, C8⋊C22.C2, C4.35(C2×D4), C8.C4⋊5C2, (C2×SD16)⋊2C2, C4.D4⋊3C2, C8.C22⋊3C2, (C2×C4).8C23, C4.10D4⋊3C2, (C2×C8).17C22, C4○D4.9C22, C2.23(C4⋊D4), (C2×D4).19C22, C22.6(C4○D4), (C2×Q8).15C22, SmallGroup(64,152)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.3D4
G = < a,b,c,d | a4=b2=1, c4=d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c3 >
Character table of D4.3D4
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 8E | 8F | 8G | |
size | 1 | 1 | 2 | 4 | 8 | 2 | 2 | 4 | 8 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ16 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 7 5 3)(2 8 6 4)(9 11 13 15)(10 12 14 16)
(1 12)(2 13)(3 14)(4 15)(5 16)(6 9)(7 10)(8 11)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 4 5 8)(2 7 6 3)(9 12 13 16)(10 15 14 11)
G:=sub<Sym(16)| (1,7,5,3)(2,8,6,4)(9,11,13,15)(10,12,14,16), (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,4,5,8)(2,7,6,3)(9,12,13,16)(10,15,14,11)>;
G:=Group( (1,7,5,3)(2,8,6,4)(9,11,13,15)(10,12,14,16), (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,4,5,8)(2,7,6,3)(9,12,13,16)(10,15,14,11) );
G=PermutationGroup([[(1,7,5,3),(2,8,6,4),(9,11,13,15),(10,12,14,16)], [(1,12),(2,13),(3,14),(4,15),(5,16),(6,9),(7,10),(8,11)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,4,5,8),(2,7,6,3),(9,12,13,16),(10,15,14,11)]])
G:=TransitiveGroup(16,132);
D4.3D4 is a maximal subgroup of
M4(2).10C23 D8⋊11D4 D8⋊6D4 C8.4S4
D4p.D4: D8.13D4 D8○SD16 D12.2D4 D12.6D4 C24.42D4 C24.44D4 D20.2D4 D20.6D4 ...
M4(2).D2p: M4(2).37D4 M4(2).38D4 Q8.8D12 M4(2).13D6 M4(2).15D6 D4.3D20 M4(2).13D10 M4(2).15D10 ...
D4.3D4 is a maximal quotient of
M4(2).D2p: M4(2).48D4 M4(2).49D4 M4(2).31D4 M4(2).5D4 M4(2).10D4 M4(2).11D4 M4(2).12D4 M4(2).13D4 ...
(C2×C8).D2p: C8⋊8D8 C8⋊14SD16 C8⋊11SD16 C8⋊8Q16 D4.2D8 Q8.2D8 D4.Q16 Q8.2Q16 ...
Matrix representation of D4.3D4 ►in GL4(𝔽3) generated by
1 | 0 | 2 | 0 |
0 | 1 | 0 | 1 |
2 | 0 | 2 | 0 |
0 | 1 | 0 | 2 |
1 | 0 | 1 | 2 |
0 | 1 | 1 | 2 |
1 | 2 | 2 | 0 |
1 | 2 | 0 | 2 |
0 | 2 | 0 | 2 |
1 | 2 | 2 | 0 |
0 | 1 | 0 | 2 |
1 | 0 | 1 | 2 |
1 | 2 | 0 | 2 |
2 | 1 | 1 | 0 |
2 | 0 | 2 | 2 |
0 | 1 | 2 | 2 |
G:=sub<GL(4,GF(3))| [1,0,2,0,0,1,0,1,2,0,2,0,0,1,0,2],[1,0,1,1,0,1,2,2,1,1,2,0,2,2,0,2],[0,1,0,1,2,2,1,0,0,2,0,1,2,0,2,2],[1,2,2,0,2,1,0,1,0,1,2,2,2,0,2,2] >;
D4.3D4 in GAP, Magma, Sage, TeX
D_4._3D_4
% in TeX
G:=Group("D4.3D4");
// GroupNames label
G:=SmallGroup(64,152);
// by ID
G=gap.SmallGroup(64,152);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,55,362,963,117,1444,376,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=1,c^4=d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^3>;
// generators/relations
Export
Subgroup lattice of D4.3D4 in TeX
Character table of D4.3D4 in TeX