p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4⋊2Q8, C4.10SD16, C42.24C22, C4⋊Q8⋊4C2, C4⋊C8⋊10C2, C4.Q8⋊7C2, (C4×D4).8C2, (C2×C4).34D4, C4.13(C2×Q8), D4⋊C4.5C2, C4.25(C4○D4), C4⋊C4.13C22, (C2×C8).34C22, C2.11(C2×SD16), C22.97(C2×D4), C2.14(C8⋊C22), (C2×C4).101C23, (C2×D4).58C22, C2.14(C22⋊Q8), SmallGroup(64,157)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4⋊2Q8
G = < a,b,c,d | a4=b2=c4=1, d2=c2, bab=dad-1=a-1, ac=ca, cbc-1=a2b, dbd-1=ab, dcd-1=c-1 >
Character table of D4⋊2Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ12 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 8)(2 7)(3 6)(4 5)(9 14)(10 13)(11 16)(12 15)(17 21)(18 24)(19 23)(20 22)(25 29)(26 32)(27 31)(28 30)
(1 16 5 10)(2 13 6 11)(3 14 7 12)(4 15 8 9)(17 26 23 32)(18 27 24 29)(19 28 21 30)(20 25 22 31)
(1 23 5 17)(2 22 6 20)(3 21 7 19)(4 24 8 18)(9 29 15 27)(10 32 16 26)(11 31 13 25)(12 30 14 28)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,16)(12,15)(17,21)(18,24)(19,23)(20,22)(25,29)(26,32)(27,31)(28,30), (1,16,5,10)(2,13,6,11)(3,14,7,12)(4,15,8,9)(17,26,23,32)(18,27,24,29)(19,28,21,30)(20,25,22,31), (1,23,5,17)(2,22,6,20)(3,21,7,19)(4,24,8,18)(9,29,15,27)(10,32,16,26)(11,31,13,25)(12,30,14,28)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,16)(12,15)(17,21)(18,24)(19,23)(20,22)(25,29)(26,32)(27,31)(28,30), (1,16,5,10)(2,13,6,11)(3,14,7,12)(4,15,8,9)(17,26,23,32)(18,27,24,29)(19,28,21,30)(20,25,22,31), (1,23,5,17)(2,22,6,20)(3,21,7,19)(4,24,8,18)(9,29,15,27)(10,32,16,26)(11,31,13,25)(12,30,14,28) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,8),(2,7),(3,6),(4,5),(9,14),(10,13),(11,16),(12,15),(17,21),(18,24),(19,23),(20,22),(25,29),(26,32),(27,31),(28,30)], [(1,16,5,10),(2,13,6,11),(3,14,7,12),(4,15,8,9),(17,26,23,32),(18,27,24,29),(19,28,21,30),(20,25,22,31)], [(1,23,5,17),(2,22,6,20),(3,21,7,19),(4,24,8,18),(9,29,15,27),(10,32,16,26),(11,31,13,25),(12,30,14,28)]])
D4⋊2Q8 is a maximal subgroup of
D4⋊2SD16 Q8⋊2SD16 D4⋊Q16 C42.195C23 D4.SD16 D4.3Q16 C42.199C23 C8⋊11SD16 D4.2SD16 D4.Q16 C8⋊3SD16 C42.248C23 C42.254C23 C42.447D4 C42.219D4 C42.448D4 C42.20C23 C42.23C23 C42.222D4 C42.450D4 C42.227D4 C42.234D4 C42.352C23 C42.359C23 C42.279D4 C42.285D4 C42.294D4 C42.295D4 C42.300D4 C42.301D4 C4.2- 1+4 C42.30C23 D4⋊7SD16 C42.468C23 C42.41C23 C42.46C23 C42.474C23 C42.480C23 D4⋊9SD16 C42.490C23 C42.495C23 C42.498C23 C42.501C23 Q8⋊8SD16 C42.507C23 C42.510C23 C42.512C23 C42.514C23 Q8×SD16
D4p⋊Q8: D8⋊6Q8 D8⋊4Q8 D12⋊3Q8 D12⋊Q8 D12⋊5Q8 D20⋊3Q8 D20⋊Q8 D20⋊5Q8 ...
C4p.SD16: D4.1Q16 C8.8SD16 C12.38SD16 C20.38SD16 C28.38SD16 ...
C4p⋊Q8⋊C2: C42.287D4 C42.290D4 C42.423C23 C42.426C23 C42.59C23 C42.64C23 SD16⋊Q8 SD16⋊3Q8 ...
D4⋊2Q8 is a maximal quotient of
C42.98D4 D4⋊(C4⋊C4) C4.Q8⋊10C4 C42.30Q8 C42.121D4 (C2×C8)⋊Q8 C4⋊C4.106D4 C4.(C4⋊Q8) (C2×C8).169D4 (C2×C4).23Q16
D4p⋊Q8: D8⋊3Q8 D12⋊3Q8 D12⋊Q8 D12⋊5Q8 D20⋊3Q8 D20⋊Q8 D20⋊5Q8 D28⋊3Q8 ...
C4p.SD16: D8.2Q8 C12.38SD16 C20.38SD16 C28.38SD16 ...
(Cp×D4)⋊Q8: (C2×D4)⋊Q8 D4⋊Dic6 D4⋊Dic10 D4⋊Dic14 ...
Matrix representation of D4⋊2Q8 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 16 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 16 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
12 | 5 | 0 | 0 |
5 | 5 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 4 | 0 |
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,16,0,0,16,0,0,0,0,0,16,0,0,0,0,16],[0,1,0,0,16,0,0,0,0,0,0,16,0,0,1,0],[12,5,0,0,5,5,0,0,0,0,0,4,0,0,4,0] >;
D4⋊2Q8 in GAP, Magma, Sage, TeX
D_4\rtimes_2Q_8
% in TeX
G:=Group("D4:2Q8");
// GroupNames label
G:=SmallGroup(64,157);
// by ID
G=gap.SmallGroup(64,157);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,240,121,55,362,1444,376,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^4=1,d^2=c^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of D4⋊2Q8 in TeX
Character table of D4⋊2Q8 in TeX