p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊8D4, C22⋊1SD16, C23.26D4, C4.Q8⋊6C2, (C22×C8)⋊9C2, C4.53(C2×D4), (C2×C4).54D4, C22⋊Q8⋊3C2, D4⋊C4⋊1C2, Q8⋊C4⋊1C2, C4.7(C4○D4), C4⋊D4.3C2, C4⋊C4.5C22, C2.9(C2×SD16), (C2×SD16)⋊13C2, C2.10(C4○D8), (C2×C8).91C22, (C2×C4).93C23, C22.89(C2×D4), C2.17(C4⋊D4), (C2×D4).15C22, (C2×Q8).11C22, (C22×C4).117C22, SmallGroup(64,146)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊8D4
G = < a,b,c | a8=b4=c2=1, bab-1=cac=a3, cbc=b-1 >
Subgroups: 117 in 62 conjugacy classes, 29 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, D4⋊C4, Q8⋊C4, C4.Q8, C4⋊D4, C22⋊Q8, C22×C8, C2×SD16, C8⋊8D4
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C4○D8, C8⋊8D4
Character table of C8⋊8D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | 2 | 2 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | -2 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 2i | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | -2i | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | -√2 | -√2 | √-2 | √2 | -√-2 | √2 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | √2 | √2 | √-2 | -√2 | -√-2 | -√2 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | √2 | √2 | -√-2 | -√2 | √-2 | -√2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | -√2 | -√2 | -√-2 | √2 | √-2 | √2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 31 21)(2 9 32 24)(3 12 25 19)(4 15 26 22)(5 10 27 17)(6 13 28 20)(7 16 29 23)(8 11 30 18)
(2 4)(3 7)(6 8)(9 22)(10 17)(11 20)(12 23)(13 18)(14 21)(15 24)(16 19)(25 29)(26 32)(28 30)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,31,21)(2,9,32,24)(3,12,25,19)(4,15,26,22)(5,10,27,17)(6,13,28,20)(7,16,29,23)(8,11,30,18), (2,4)(3,7)(6,8)(9,22)(10,17)(11,20)(12,23)(13,18)(14,21)(15,24)(16,19)(25,29)(26,32)(28,30)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,31,21)(2,9,32,24)(3,12,25,19)(4,15,26,22)(5,10,27,17)(6,13,28,20)(7,16,29,23)(8,11,30,18), (2,4)(3,7)(6,8)(9,22)(10,17)(11,20)(12,23)(13,18)(14,21)(15,24)(16,19)(25,29)(26,32)(28,30) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,31,21),(2,9,32,24),(3,12,25,19),(4,15,26,22),(5,10,27,17),(6,13,28,20),(7,16,29,23),(8,11,30,18)], [(2,4),(3,7),(6,8),(9,22),(10,17),(11,20),(12,23),(13,18),(14,21),(15,24),(16,19),(25,29),(26,32),(28,30)]])
C8⋊8D4 is a maximal subgroup of
M4(2)⋊15D4 (C2×C8)⋊11D4 M4(2)⋊17D4 C42.308D4 C42.258D4 C23⋊4SD16 C24.123D4 C4.152+ 1+4 C4.162+ 1+4 C42.296D4 C42.298D4 C8⋊2S4
D2p⋊SD16: D4⋊7SD16 D4⋊8SD16 D4⋊9SD16 D6⋊SD16 D6⋊2SD16 C8⋊8D12 C24⋊14D4 D10⋊SD16 ...
C4⋊C4.D2p: C42.385C23 C42.386C23 C42.390C23 C42.391C23 C4.2- 1+4 C42.25C23 C42.27C23 C42.30C23 ...
C8⋊pD4⋊C2: C24.144D4 M4(2)⋊14D4 (C2×C8)⋊13D4 M4(2)⋊16D4 C42.365D4 C42.257D4 C24.121D4 C24.124D4 ...
(C2×C2p)⋊SD16: C42.294D4 C24⋊30D4 C40⋊30D4 C56⋊30D4 ...
C8⋊8D4 is a maximal quotient of
C24.133D4 C24.135D4 C2.(C8⋊8D4) C2.(C8⋊7D4) C8⋊7(C4⋊C4) (C2×C4)⋊9SD16 C24.89D4 C4.(C4⋊Q8)
C8⋊D4p: C8⋊8D8 C8⋊8D12 C8⋊8D20 C8⋊8D28 ...
C23.D4p: C23.23D8 C24⋊30D4 C40⋊30D4 C56⋊30D4 ...
C4⋊C4.D2p: C8⋊14SD16 C8⋊11SD16 C8⋊8Q16 D4.2SD16 Q8.2SD16 D4.3SD16 Q8.3SD16 C24.84D4 ...
(C2×D4).D2p: C23⋊3SD16 (C2×C4)⋊5SD16 C24⋊14D4 C40⋊14D4 C56⋊14D4 ...
Matrix representation of C8⋊8D4 ►in GL4(𝔽17) generated by
5 | 12 | 0 | 0 |
5 | 5 | 0 | 0 |
0 | 0 | 12 | 5 |
0 | 0 | 12 | 12 |
0 | 13 | 0 | 0 |
13 | 0 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [5,5,0,0,12,5,0,0,0,0,12,12,0,0,5,12],[0,13,0,0,13,0,0,0,0,0,16,0,0,0,0,1],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;
C8⋊8D4 in GAP, Magma, Sage, TeX
C_8\rtimes_8D_4
% in TeX
G:=Group("C8:8D4");
// GroupNames label
G:=SmallGroup(64,146);
// by ID
G=gap.SmallGroup(64,146);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,55,362,963,117]);
// Polycyclic
G:=Group<a,b,c|a^8=b^4=c^2=1,b*a*b^-1=c*a*c=a^3,c*b*c=b^-1>;
// generators/relations
Export