p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4.4D8, C4.3SD16, C42.76C22, (C4×C8)⋊5C2, C4⋊Q8⋊5C2, C2.9(C2×D8), (C2×C4).74D4, D4⋊C4⋊3C2, C4⋊1D4.4C2, C4.13(C4○D4), C4⋊C4.16C22, (C2×C8).66C22, C2.14(C2×SD16), (C2×C4).111C23, C2.9(C4.4D4), (C2×D4).24C22, C22.107(C2×D4), SmallGroup(64,167)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4.4D8
G = < a,b,c | a4=b8=1, c2=a2, ab=ba, cac-1=a-1, cbc-1=a2b-1 >
Subgroups: 129 in 59 conjugacy classes, 29 normal (13 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C2×D4, C2×D4, C2×Q8, C4×C8, D4⋊C4, C4⋊1D4, C4⋊Q8, C4.4D8
Quotients: C1, C2, C22, D4, C23, D8, SD16, C2×D4, C4○D4, C4.4D4, C2×D8, C2×SD16, C4.4D8
Character table of C4.4D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | -√2 | -√2 | -√2 | √2 | √2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | √2 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | -2i | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -2i | 0 | -2i | 0 | 2i | 0 | 2i | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 2i | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 2i | 0 | 2i | 0 | -2i | 0 | -2i | complex lifted from C4○D4 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
(1 21 27 10)(2 22 28 11)(3 23 29 12)(4 24 30 13)(5 17 31 14)(6 18 32 15)(7 19 25 16)(8 20 26 9)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 26 27 8)(2 7 28 25)(3 32 29 6)(4 5 30 31)(9 21 20 10)(11 19 22 16)(12 15 23 18)(13 17 24 14)
G:=sub<Sym(32)| (1,21,27,10)(2,22,28,11)(3,23,29,12)(4,24,30,13)(5,17,31,14)(6,18,32,15)(7,19,25,16)(8,20,26,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,26,27,8)(2,7,28,25)(3,32,29,6)(4,5,30,31)(9,21,20,10)(11,19,22,16)(12,15,23,18)(13,17,24,14)>;
G:=Group( (1,21,27,10)(2,22,28,11)(3,23,29,12)(4,24,30,13)(5,17,31,14)(6,18,32,15)(7,19,25,16)(8,20,26,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,26,27,8)(2,7,28,25)(3,32,29,6)(4,5,30,31)(9,21,20,10)(11,19,22,16)(12,15,23,18)(13,17,24,14) );
G=PermutationGroup([[(1,21,27,10),(2,22,28,11),(3,23,29,12),(4,24,30,13),(5,17,31,14),(6,18,32,15),(7,19,25,16),(8,20,26,9)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,26,27,8),(2,7,28,25),(3,32,29,6),(4,5,30,31),(9,21,20,10),(11,19,22,16),(12,15,23,18),(13,17,24,14)]])
C4.4D8 is a maximal subgroup of
D4⋊3D8 Q8⋊6SD16 Q8⋊3D8 C42.189C23 D4.D8 C42.201C23 Q8.D8 Q8⋊3SD16 D4.2SD16 Q8.2SD16 C42.248C23 C42.249C23 C82⋊3C2 C42.355D4 C42.366C23 C42.240D4 C42.243D4 C42.263D4 C42.278D4 C42.279D4 C42.280D4 D4⋊7SD16 C42.469C23 C42.473C23 C42.482C23 Q8⋊4D8 C42.502C23 Q8⋊8SD16 C42.506C23 C42.507C23 C42.509C23 C42.514C23 C42.516C23
C4p.D8: C82⋊5C2 C8.2D8 C4.5D24 C12.16D8 C12.D8 C4.5D40 C20.16D8 C20.D8 ...
C4p⋊Q8⋊C2: C42.391C23 C42.423C23 Dic3.SD16 Dic5.5D8 Dic7.SD16 ...
C8⋊pD4⋊C2: C8⋊5D8 C8⋊6SD16 C42.664C23 C8⋊3D8 C42.365D4 C42.366D4 C42.259D4 C42.261D4 ...
C2.(C8⋊pD4): D4.2D8 Q8.2D8 C42.252C23 C42.253C23 C82⋊12C2 C8⋊5SD16 C42.666C23 C42.667C23 ...
C4.4D8 is a maximal quotient of
C42.55Q8 C2.(C8⋊7D4) C42.432D4 C42.436D4 C4⋊C4⋊7D4 (C2×C4).24D8 (C2×C4).28D8
C4.D8p: C4.4D16 C4.5D24 C4.5D40 C4.5D56 ...
C4p.SD16: C4.SD32 C8.22SD16 C8.12SD16 C8.13SD16 C8.14SD16 C12.16D8 C12.D8 C20.16D8 ...
C4⋊C4.D2p: (C2×D4)⋊Q8 Dic3.SD16 Dic5.5D8 Dic7.SD16 ...
Matrix representation of C4.4D8 ►in GL4(𝔽17) generated by
16 | 2 | 0 | 0 |
16 | 1 | 0 | 0 |
0 | 0 | 0 | 13 |
0 | 0 | 13 | 0 |
7 | 10 | 0 | 0 |
12 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
7 | 10 | 0 | 0 |
12 | 10 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
G:=sub<GL(4,GF(17))| [16,16,0,0,2,1,0,0,0,0,0,13,0,0,13,0],[7,12,0,0,10,0,0,0,0,0,0,1,0,0,1,0],[7,12,0,0,10,10,0,0,0,0,0,16,0,0,1,0] >;
C4.4D8 in GAP, Magma, Sage, TeX
C_4._4D_8
% in TeX
G:=Group("C4.4D8");
// GroupNames label
G:=SmallGroup(64,167);
// by ID
G=gap.SmallGroup(64,167);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,103,362,50,963,117,1444,88]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=1,c^2=a^2,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=a^2*b^-1>;
// generators/relations
Export