p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4⋊2D8, D4⋊1D4, C42.16C22, C4⋊C8⋊3C2, (C4×D4)⋊3C2, (C2×D8)⋊3C2, C2.5(C2×D8), C4⋊1D4⋊2C2, (C2×C4).26D4, C4.29(C2×D4), D4⋊C4⋊6C2, (C2×C8).3C22, C4.39(C4○D4), C4⋊C4.56C22, C2.9(C8⋊C22), (C2×C4).87C23, C22.83(C2×D4), C2.11(C4⋊D4), (C2×D4).11C22, SmallGroup(64,140)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4⋊D8
G = < a,b,c | a4=b8=c2=1, bab-1=cac=a-1, cbc=b-1 >
Subgroups: 157 in 70 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, C23, C42, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C2×D4, C2×D4, D4⋊C4, C4⋊C8, C4×D4, C4⋊1D4, C2×D8, C4⋊D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C4⋊D4, C2×D8, C8⋊C22, C4⋊D8
Character table of C4⋊D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 18 30 10)(2 11 31 19)(3 20 32 12)(4 13 25 21)(5 22 26 14)(6 15 27 23)(7 24 28 16)(8 9 29 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10)(2 9)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(17 31)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)(24 32)
G:=sub<Sym(32)| (1,18,30,10)(2,11,31,19)(3,20,32,12)(4,13,25,21)(5,22,26,14)(6,15,27,23)(7,24,28,16)(8,9,29,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,9)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,32)>;
G:=Group( (1,18,30,10)(2,11,31,19)(3,20,32,12)(4,13,25,21)(5,22,26,14)(6,15,27,23)(7,24,28,16)(8,9,29,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,9)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,32) );
G=PermutationGroup([[(1,18,30,10),(2,11,31,19),(3,20,32,12),(4,13,25,21),(5,22,26,14),(6,15,27,23),(7,24,28,16),(8,9,29,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10),(2,9),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(17,31),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25),(24,32)]])
C4⋊D8 is a maximal subgroup of
D4⋊D8 Q8⋊D8 D4⋊3D8 Q8⋊3D8 C42.189C23 D4.2SD16 D4.2D8 C42.248C23 C42.252C23 C42.443D4 C42.444D4 C42.18C23 C42.221D4 C42.450D4 C42.227D4 C42.233D4 C42.353C23 C42.356C23 C42.263D4 C42.270D4 Q8⋊4D8 C42.502C23 C42.507C23 C42.511C23 C42.514C23 Q8⋊5D8
D4p⋊D4: D8⋊9D4 D8⋊4D4 D12⋊3D4 C4⋊D24 C12⋊2D8 D20⋊3D4 C4⋊D40 C20⋊2D8 ...
C4p⋊D8: C8⋊8D8 C8⋊7D8 C8⋊D8 C8⋊2D8 C12⋊7D8 C20⋊7D8 C28⋊7D8 ...
(Cp×D4)⋊D4: C42.211D4 C42.14C23 Dic3⋊D8 Dic5⋊D8 Dic7⋊D8 ...
C8⋊pD4⋊C2: D4⋊SD16 C42.185C23 C42.272D4 C42.275D4 C42.406C23 C42.410C23 C42.293D4 C42.295D4 ...
C4⋊D8 is a maximal quotient of
C8.28D8 C8.D8 C42.98D4 (C2×C4)⋊9D8 D4⋊C4⋊C4 C42.29Q8 C42.118D4 C4⋊C4⋊7D4 (C2×C4)⋊3D8 (C2×C4).23D8 (C2×C4).24D8 (C2×C8).1Q8 Q16⋊2D4 D8.4D4 Q16.4D4 D8.5D4 Q16.5D4 C8.3D8 C8.5D8
D4p⋊D4: D8⋊2D4 D8⋊3D4 D12⋊3D4 C4⋊D24 C12⋊2D8 D20⋊3D4 C4⋊D40 C20⋊2D8 ...
C4p⋊D8: C8⋊8D8 C8⋊7D8 C8⋊D8 C8⋊2D8 C12⋊7D8 C20⋊7D8 C28⋊7D8 ...
(Cp×D4)⋊D4: (C2×C4)⋊2D8 Dic3⋊D8 Dic5⋊D8 Dic7⋊D8 ...
Matrix representation of C4⋊D8 ►in GL4(𝔽17) generated by
13 | 9 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
13 | 0 | 0 | 0 |
4 | 4 | 0 | 0 |
0 | 0 | 3 | 14 |
0 | 0 | 3 | 3 |
13 | 9 | 0 | 0 |
4 | 4 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(17))| [13,0,0,0,9,4,0,0,0,0,16,0,0,0,0,16],[13,4,0,0,0,4,0,0,0,0,3,3,0,0,14,3],[13,4,0,0,9,4,0,0,0,0,16,0,0,0,0,1] >;
C4⋊D8 in GAP, Magma, Sage, TeX
C_4\rtimes D_8
% in TeX
G:=Group("C4:D8");
// GroupNames label
G:=SmallGroup(64,140);
// by ID
G=gap.SmallGroup(64,140);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,55,362,1444,376,88]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export