Copied to
clipboard

?

G = (C2×C8)⋊12D4order 128 = 27

8th semidirect product of C2×C8 and D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2×C8)⋊12D4, C82D43C2, C87D434C2, C8.109(C2×D4), (C2×D4).217D4, C2.10(D4○D8), (C22×D8)⋊16C2, C4⋊C4.27C23, C4⋊D43C22, (C2×Q8).172D4, C23.76(C2×D4), C2.D847C22, C4.Q851C22, C4.70(C4⋊D4), (C2×C8).254C23, (C2×C4).262C24, (C22×C8)⋊31C22, (C2×D4).65C23, C4.156(C22×D4), D4⋊C452C22, (C2×D8).119C22, C22.29C2410C2, C23.37D435C2, C23.25D428C2, C22.87(C4⋊D4), (C2×M4(2))⋊54C22, (C22×C4).984C23, C22.522(C22×D4), (C22×D4).350C22, C42⋊C2.111C22, (C2×C8○D4)⋊2C2, C4.29(C2×C4○D4), (C2×C4).130(C2×D4), C2.80(C2×C4⋊D4), (C2×C4).283(C4○D4), (C2×C4○D4).302C22, SmallGroup(128,1790)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — (C2×C8)⋊12D4
C1C2C22C2×C4C22×C4C2×C4○D4C2×C8○D4 — (C2×C8)⋊12D4
C1C2C2×C4 — (C2×C8)⋊12D4
C1C22C2×C4○D4 — (C2×C8)⋊12D4
C1C2C2C2×C4 — (C2×C8)⋊12D4

Subgroups: 620 in 262 conjugacy classes, 100 normal (20 characteristic)
C1, C2, C2 [×2], C2 [×8], C4 [×2], C4 [×2], C4 [×6], C22, C22 [×2], C22 [×28], C8 [×4], C8 [×2], C2×C4 [×2], C2×C4 [×6], C2×C4 [×8], D4 [×26], Q8 [×2], C23, C23 [×2], C23 [×12], C42 [×2], C22⋊C4 [×10], C4⋊C4 [×4], C2×C8 [×2], C2×C8 [×6], C2×C8 [×4], M4(2) [×6], D8 [×8], C22×C4, C22×C4 [×2], C2×D4, C2×D4 [×6], C2×D4 [×18], C2×Q8, C4○D4 [×4], C24 [×2], D4⋊C4 [×8], C4.Q8 [×2], C2.D8 [×2], C42⋊C2 [×2], C22≀C2 [×4], C4⋊D4 [×8], C4.4D4 [×2], C41D4 [×2], C22×C8, C22×C8 [×2], C2×M4(2), C2×M4(2) [×2], C8○D4 [×4], C2×D8 [×4], C2×D8 [×4], C22×D4 [×2], C2×C4○D4, C23.37D4 [×2], C23.25D4, C87D4 [×4], C82D4 [×4], C22.29C24 [×2], C2×C8○D4, C22×D8, (C2×C8)⋊12D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], C2×D4 [×12], C4○D4 [×2], C24, C4⋊D4 [×4], C22×D4 [×2], C2×C4○D4, C2×C4⋊D4, D4○D8 [×2], (C2×C8)⋊12D4

Generators and relations
 G = < a,b,c,d | a2=b8=c4=d2=1, ab=ba, cac-1=ab4, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Smallest permutation representation
On 32 points
Generators in S32
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 9 27 23)(2 16 28 22)(3 15 29 21)(4 14 30 20)(5 13 31 19)(6 12 32 18)(7 11 25 17)(8 10 26 24)
(1 8)(2 7)(3 6)(4 5)(9 24)(10 23)(11 22)(12 21)(13 20)(14 19)(15 18)(16 17)(25 28)(26 27)(29 32)(30 31)

G:=sub<Sym(32)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9,27,23)(2,16,28,22)(3,15,29,21)(4,14,30,20)(5,13,31,19)(6,12,32,18)(7,11,25,17)(8,10,26,24), (1,8)(2,7)(3,6)(4,5)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17)(25,28)(26,27)(29,32)(30,31)>;

G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9,27,23)(2,16,28,22)(3,15,29,21)(4,14,30,20)(5,13,31,19)(6,12,32,18)(7,11,25,17)(8,10,26,24), (1,8)(2,7)(3,6)(4,5)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17)(25,28)(26,27)(29,32)(30,31) );

G=PermutationGroup([(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,9,27,23),(2,16,28,22),(3,15,29,21),(4,14,30,20),(5,13,31,19),(6,12,32,18),(7,11,25,17),(8,10,26,24)], [(1,8),(2,7),(3,6),(4,5),(9,24),(10,23),(11,22),(12,21),(13,20),(14,19),(15,18),(16,17),(25,28),(26,27),(29,32),(30,31)])

Matrix representation G ⊆ GL6(𝔽17)

100000
010000
0016000
0001600
000010
000001
,
0130000
1300000
0031400
003300
0000314
000033
,
400000
0130000
00001414
0000143
003300
0031400
,
0130000
400000
003300
0031400
00001414
0000143

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,3,3,0,0,0,0,14,3,0,0,0,0,0,0,3,3,0,0,0,0,14,3],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,3,3,0,0,0,0,3,14,0,0,14,14,0,0,0,0,14,3,0,0],[0,4,0,0,0,0,13,0,0,0,0,0,0,0,3,3,0,0,0,0,3,14,0,0,0,0,0,0,14,14,0,0,0,0,14,3] >;

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J8A8B8C8D8E···8J
order122222222222444444444488888···8
size111122448888222244888822224···4

32 irreducible representations

dim1111111122224
type++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4C4○D4D4○D8
kernel(C2×C8)⋊12D4C23.37D4C23.25D4C87D4C82D4C22.29C24C2×C8○D4C22×D8C2×C8C2×D4C2×Q8C2×C4C2
# reps1214421143144

In GAP, Magma, Sage, TeX

(C_2\times C_8)\rtimes_{12}D_4
% in TeX

G:=Group("(C2xC8):12D4");
// GroupNames label

G:=SmallGroup(128,1790);
// by ID

G=gap.SmallGroup(128,1790);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,568,758,521,2804,172]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^4=d^2=1,a*b=b*a,c*a*c^-1=a*b^4,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽