direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C8⋊2D4, C24.108D4, C8⋊5(C2×D4), (C2×C8)⋊9D4, (C22×D8)⋊15C2, (C2×D8)⋊46C22, C4⋊C4.21C23, C4.Q8⋊48C22, C4⋊D4⋊54C22, (C2×C4).256C24, (C2×C8).248C23, (C2×D4).60C23, C4.150(C22×D4), (C22×C4).426D4, C23.862(C2×D4), C4.111(C4⋊D4), D4⋊C4⋊91C22, (C22×M4(2))⋊2C2, (C2×M4(2))⋊51C22, (C23×C4).548C22, (C22×C8).256C22, C22.516(C22×D4), C22.175(C4⋊D4), C22.116(C8⋊C22), (C22×C4).1535C23, (C22×D4).347C22, (C2×C4.Q8)⋊9C2, C4.23(C2×C4○D4), (C2×C4⋊D4)⋊47C2, (C2×C4).472(C2×D4), C2.74(C2×C4⋊D4), C2.18(C2×C8⋊C22), (C2×D4⋊C4)⋊54C2, (C2×C4).702(C4○D4), (C2×C4⋊C4).589C22, SmallGroup(128,1784)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 692 in 298 conjugacy classes, 108 normal (18 characteristic)
C1, C2, C2 [×6], C2 [×6], C4 [×2], C4 [×2], C4 [×6], C22, C22 [×6], C22 [×30], C8 [×4], C8 [×2], C2×C4 [×2], C2×C4 [×6], C2×C4 [×18], D4 [×28], C23, C23 [×2], C23 [×22], C22⋊C4 [×8], C4⋊C4 [×4], C4⋊C4 [×2], C2×C8 [×8], C2×C8 [×2], M4(2) [×8], D8 [×8], C22×C4 [×2], C22×C4 [×4], C22×C4 [×6], C2×D4 [×4], C2×D4 [×26], C24, C24 [×2], D4⋊C4 [×8], C4.Q8 [×4], C2×C22⋊C4 [×2], C2×C4⋊C4 [×2], C4⋊D4 [×8], C4⋊D4 [×4], C22×C8 [×2], C2×M4(2) [×4], C2×M4(2) [×4], C2×D8 [×4], C2×D8 [×4], C23×C4, C22×D4 [×2], C22×D4 [×2], C2×D4⋊C4 [×2], C2×C4.Q8, C8⋊2D4 [×8], C2×C4⋊D4 [×2], C22×M4(2), C22×D8, C2×C8⋊2D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], C2×D4 [×12], C4○D4 [×2], C24, C4⋊D4 [×4], C8⋊C22 [×4], C22×D4 [×2], C2×C4○D4, C8⋊2D4 [×4], C2×C4⋊D4, C2×C8⋊C22 [×2], C2×C8⋊2D4
Generators and relations
G = < a,b,c,d | a2=b8=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b3, dbd=b-1, dcd=c-1 >
(1 55)(2 56)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 60)(10 61)(11 62)(12 63)(13 64)(14 57)(15 58)(16 59)(17 39)(18 40)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 41)(26 42)(27 43)(28 44)(29 45)(30 46)(31 47)(32 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 28 19 59)(2 31 20 62)(3 26 21 57)(4 29 22 60)(5 32 23 63)(6 27 24 58)(7 30 17 61)(8 25 18 64)(9 50 45 36)(10 53 46 39)(11 56 47 34)(12 51 48 37)(13 54 41 40)(14 49 42 35)(15 52 43 38)(16 55 44 33)
(2 8)(3 7)(4 6)(9 43)(10 42)(11 41)(12 48)(13 47)(14 46)(15 45)(16 44)(17 21)(18 20)(22 24)(25 62)(26 61)(27 60)(28 59)(29 58)(30 57)(31 64)(32 63)(34 40)(35 39)(36 38)(49 53)(50 52)(54 56)
G:=sub<Sym(64)| (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,60)(10,61)(11,62)(12,63)(13,64)(14,57)(15,58)(16,59)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,28,19,59)(2,31,20,62)(3,26,21,57)(4,29,22,60)(5,32,23,63)(6,27,24,58)(7,30,17,61)(8,25,18,64)(9,50,45,36)(10,53,46,39)(11,56,47,34)(12,51,48,37)(13,54,41,40)(14,49,42,35)(15,52,43,38)(16,55,44,33), (2,8)(3,7)(4,6)(9,43)(10,42)(11,41)(12,48)(13,47)(14,46)(15,45)(16,44)(17,21)(18,20)(22,24)(25,62)(26,61)(27,60)(28,59)(29,58)(30,57)(31,64)(32,63)(34,40)(35,39)(36,38)(49,53)(50,52)(54,56)>;
G:=Group( (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,60)(10,61)(11,62)(12,63)(13,64)(14,57)(15,58)(16,59)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,28,19,59)(2,31,20,62)(3,26,21,57)(4,29,22,60)(5,32,23,63)(6,27,24,58)(7,30,17,61)(8,25,18,64)(9,50,45,36)(10,53,46,39)(11,56,47,34)(12,51,48,37)(13,54,41,40)(14,49,42,35)(15,52,43,38)(16,55,44,33), (2,8)(3,7)(4,6)(9,43)(10,42)(11,41)(12,48)(13,47)(14,46)(15,45)(16,44)(17,21)(18,20)(22,24)(25,62)(26,61)(27,60)(28,59)(29,58)(30,57)(31,64)(32,63)(34,40)(35,39)(36,38)(49,53)(50,52)(54,56) );
G=PermutationGroup([(1,55),(2,56),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,60),(10,61),(11,62),(12,63),(13,64),(14,57),(15,58),(16,59),(17,39),(18,40),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,41),(26,42),(27,43),(28,44),(29,45),(30,46),(31,47),(32,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,28,19,59),(2,31,20,62),(3,26,21,57),(4,29,22,60),(5,32,23,63),(6,27,24,58),(7,30,17,61),(8,25,18,64),(9,50,45,36),(10,53,46,39),(11,56,47,34),(12,51,48,37),(13,54,41,40),(14,49,42,35),(15,52,43,38),(16,55,44,33)], [(2,8),(3,7),(4,6),(9,43),(10,42),(11,41),(12,48),(13,47),(14,46),(15,45),(16,44),(17,21),(18,20),(22,24),(25,62),(26,61),(27,60),(28,59),(29,58),(30,57),(31,64),(32,63),(34,40),(35,39),(36,38),(49,53),(50,52),(54,56)])
Matrix representation ►G ⊆ GL8(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
16 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 15 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,9,13,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,16,1,0,0,0,0,0,0,15,1,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0],[16,16,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,16],[1,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,15,1] >;
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C4○D4 | C8⋊C22 |
kernel | C2×C8⋊2D4 | C2×D4⋊C4 | C2×C4.Q8 | C8⋊2D4 | C2×C4⋊D4 | C22×M4(2) | C22×D8 | C2×C8 | C22×C4 | C24 | C2×C4 | C22 |
# reps | 1 | 2 | 1 | 8 | 2 | 1 | 1 | 4 | 3 | 1 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_2\times C_8\rtimes_2D_4
% in TeX
G:=Group("C2xC8:2D4");
// GroupNames label
G:=SmallGroup(128,1784);
// by ID
G=gap.SmallGroup(128,1784);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,568,758,723,2804,172]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^3,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations