Copied to
clipboard

?

G = C2×C82Q8order 128 = 27

Direct product of C2 and C82Q8

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C82Q8, C42.363D4, C42.717C23, C85(C2×Q8), (C2×C8)⋊12Q8, (C2×C4).93D8, C4.20(C2×D8), C4.14(C4⋊Q8), (C2×C4).44Q16, C4.14(C2×Q16), C4⋊C4.98C23, C22.74(C2×D8), C2.12(C22×D8), C4.10(C22×Q8), (C2×C4).357C24, (C2×C8).563C23, (C4×C8).409C22, C23.884(C2×D4), (C22×C4).616D4, C4⋊Q8.283C22, C22.46(C4⋊Q8), C2.12(C22×Q16), C22.51(C2×Q16), C2.D8.178C22, (C22×C8).538C22, C22.617(C22×D4), (C2×C42).1132C22, (C22×C4).1566C23, (C2×C4×C8).39C2, C2.27(C2×C4⋊Q8), (C2×C4⋊Q8).50C2, (C2×C4).861(C2×D4), (C2×C4).246(C2×Q8), (C2×C2.D8).30C2, (C2×C4⋊C4).630C22, SmallGroup(128,1891)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2×C82Q8
C1C2C4C2×C4C22×C4C22×C8C2×C4×C8 — C2×C82Q8
C1C2C2×C4 — C2×C82Q8
C1C23C2×C42 — C2×C82Q8
C1C2C2C2×C4 — C2×C82Q8

Subgroups: 372 in 212 conjugacy classes, 132 normal (14 characteristic)
C1, C2 [×3], C2 [×4], C4 [×12], C4 [×8], C22, C22 [×6], C8 [×8], C2×C4 [×2], C2×C4 [×16], C2×C4 [×16], Q8 [×16], C23, C42 [×4], C4⋊C4 [×8], C4⋊C4 [×12], C2×C8 [×12], C22×C4 [×3], C22×C4 [×4], C2×Q8 [×16], C4×C8 [×4], C2.D8 [×16], C2×C42, C2×C4⋊C4 [×4], C2×C4⋊C4 [×2], C4⋊Q8 [×8], C4⋊Q8 [×4], C22×C8 [×2], C22×Q8 [×2], C2×C4×C8, C2×C2.D8 [×4], C82Q8 [×8], C2×C4⋊Q8 [×2], C2×C82Q8

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], Q8 [×8], C23 [×15], D8 [×4], Q16 [×4], C2×D4 [×6], C2×Q8 [×12], C24, C4⋊Q8 [×4], C2×D8 [×6], C2×Q16 [×6], C22×D4, C22×Q8 [×2], C82Q8 [×4], C2×C4⋊Q8, C22×D8, C22×Q16, C2×C82Q8

Generators and relations
 G = < a,b,c,d | a2=b8=c4=1, d2=c2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 44)(10 45)(11 46)(12 47)(13 48)(14 41)(15 42)(16 43)(25 101)(26 102)(27 103)(28 104)(29 97)(30 98)(31 99)(32 100)(33 74)(34 75)(35 76)(36 77)(37 78)(38 79)(39 80)(40 73)(49 64)(50 57)(51 58)(52 59)(53 60)(54 61)(55 62)(56 63)(65 112)(66 105)(67 106)(68 107)(69 108)(70 109)(71 110)(72 111)(81 92)(82 93)(83 94)(84 95)(85 96)(86 89)(87 90)(88 91)(113 124)(114 125)(115 126)(116 127)(117 128)(118 121)(119 122)(120 123)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 59 43 36)(2 60 44 37)(3 61 45 38)(4 62 46 39)(5 63 47 40)(6 64 48 33)(7 57 41 34)(8 58 42 35)(9 78 24 53)(10 79 17 54)(11 80 18 55)(12 73 19 56)(13 74 20 49)(14 75 21 50)(15 76 22 51)(16 77 23 52)(25 65 119 94)(26 66 120 95)(27 67 113 96)(28 68 114 89)(29 69 115 90)(30 70 116 91)(31 71 117 92)(32 72 118 93)(81 99 110 128)(82 100 111 121)(83 101 112 122)(84 102 105 123)(85 103 106 124)(86 104 107 125)(87 97 108 126)(88 98 109 127)
(1 93 43 72)(2 92 44 71)(3 91 45 70)(4 90 46 69)(5 89 47 68)(6 96 48 67)(7 95 41 66)(8 94 42 65)(9 110 24 81)(10 109 17 88)(11 108 18 87)(12 107 19 86)(13 106 20 85)(14 105 21 84)(15 112 22 83)(16 111 23 82)(25 58 119 35)(26 57 120 34)(27 64 113 33)(28 63 114 40)(29 62 115 39)(30 61 116 38)(31 60 117 37)(32 59 118 36)(49 124 74 103)(50 123 75 102)(51 122 76 101)(52 121 77 100)(53 128 78 99)(54 127 79 98)(55 126 80 97)(56 125 73 104)

G:=sub<Sym(128)| (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(25,101)(26,102)(27,103)(28,104)(29,97)(30,98)(31,99)(32,100)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,73)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63)(65,112)(66,105)(67,106)(68,107)(69,108)(70,109)(71,110)(72,111)(81,92)(82,93)(83,94)(84,95)(85,96)(86,89)(87,90)(88,91)(113,124)(114,125)(115,126)(116,127)(117,128)(118,121)(119,122)(120,123), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,59,43,36)(2,60,44,37)(3,61,45,38)(4,62,46,39)(5,63,47,40)(6,64,48,33)(7,57,41,34)(8,58,42,35)(9,78,24,53)(10,79,17,54)(11,80,18,55)(12,73,19,56)(13,74,20,49)(14,75,21,50)(15,76,22,51)(16,77,23,52)(25,65,119,94)(26,66,120,95)(27,67,113,96)(28,68,114,89)(29,69,115,90)(30,70,116,91)(31,71,117,92)(32,72,118,93)(81,99,110,128)(82,100,111,121)(83,101,112,122)(84,102,105,123)(85,103,106,124)(86,104,107,125)(87,97,108,126)(88,98,109,127), (1,93,43,72)(2,92,44,71)(3,91,45,70)(4,90,46,69)(5,89,47,68)(6,96,48,67)(7,95,41,66)(8,94,42,65)(9,110,24,81)(10,109,17,88)(11,108,18,87)(12,107,19,86)(13,106,20,85)(14,105,21,84)(15,112,22,83)(16,111,23,82)(25,58,119,35)(26,57,120,34)(27,64,113,33)(28,63,114,40)(29,62,115,39)(30,61,116,38)(31,60,117,37)(32,59,118,36)(49,124,74,103)(50,123,75,102)(51,122,76,101)(52,121,77,100)(53,128,78,99)(54,127,79,98)(55,126,80,97)(56,125,73,104)>;

G:=Group( (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(25,101)(26,102)(27,103)(28,104)(29,97)(30,98)(31,99)(32,100)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,73)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63)(65,112)(66,105)(67,106)(68,107)(69,108)(70,109)(71,110)(72,111)(81,92)(82,93)(83,94)(84,95)(85,96)(86,89)(87,90)(88,91)(113,124)(114,125)(115,126)(116,127)(117,128)(118,121)(119,122)(120,123), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,59,43,36)(2,60,44,37)(3,61,45,38)(4,62,46,39)(5,63,47,40)(6,64,48,33)(7,57,41,34)(8,58,42,35)(9,78,24,53)(10,79,17,54)(11,80,18,55)(12,73,19,56)(13,74,20,49)(14,75,21,50)(15,76,22,51)(16,77,23,52)(25,65,119,94)(26,66,120,95)(27,67,113,96)(28,68,114,89)(29,69,115,90)(30,70,116,91)(31,71,117,92)(32,72,118,93)(81,99,110,128)(82,100,111,121)(83,101,112,122)(84,102,105,123)(85,103,106,124)(86,104,107,125)(87,97,108,126)(88,98,109,127), (1,93,43,72)(2,92,44,71)(3,91,45,70)(4,90,46,69)(5,89,47,68)(6,96,48,67)(7,95,41,66)(8,94,42,65)(9,110,24,81)(10,109,17,88)(11,108,18,87)(12,107,19,86)(13,106,20,85)(14,105,21,84)(15,112,22,83)(16,111,23,82)(25,58,119,35)(26,57,120,34)(27,64,113,33)(28,63,114,40)(29,62,115,39)(30,61,116,38)(31,60,117,37)(32,59,118,36)(49,124,74,103)(50,123,75,102)(51,122,76,101)(52,121,77,100)(53,128,78,99)(54,127,79,98)(55,126,80,97)(56,125,73,104) );

G=PermutationGroup([(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,44),(10,45),(11,46),(12,47),(13,48),(14,41),(15,42),(16,43),(25,101),(26,102),(27,103),(28,104),(29,97),(30,98),(31,99),(32,100),(33,74),(34,75),(35,76),(36,77),(37,78),(38,79),(39,80),(40,73),(49,64),(50,57),(51,58),(52,59),(53,60),(54,61),(55,62),(56,63),(65,112),(66,105),(67,106),(68,107),(69,108),(70,109),(71,110),(72,111),(81,92),(82,93),(83,94),(84,95),(85,96),(86,89),(87,90),(88,91),(113,124),(114,125),(115,126),(116,127),(117,128),(118,121),(119,122),(120,123)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,59,43,36),(2,60,44,37),(3,61,45,38),(4,62,46,39),(5,63,47,40),(6,64,48,33),(7,57,41,34),(8,58,42,35),(9,78,24,53),(10,79,17,54),(11,80,18,55),(12,73,19,56),(13,74,20,49),(14,75,21,50),(15,76,22,51),(16,77,23,52),(25,65,119,94),(26,66,120,95),(27,67,113,96),(28,68,114,89),(29,69,115,90),(30,70,116,91),(31,71,117,92),(32,72,118,93),(81,99,110,128),(82,100,111,121),(83,101,112,122),(84,102,105,123),(85,103,106,124),(86,104,107,125),(87,97,108,126),(88,98,109,127)], [(1,93,43,72),(2,92,44,71),(3,91,45,70),(4,90,46,69),(5,89,47,68),(6,96,48,67),(7,95,41,66),(8,94,42,65),(9,110,24,81),(10,109,17,88),(11,108,18,87),(12,107,19,86),(13,106,20,85),(14,105,21,84),(15,112,22,83),(16,111,23,82),(25,58,119,35),(26,57,120,34),(27,64,113,33),(28,63,114,40),(29,62,115,39),(30,61,116,38),(31,60,117,37),(32,59,118,36),(49,124,74,103),(50,123,75,102),(51,122,76,101),(52,121,77,100),(53,128,78,99),(54,127,79,98),(55,126,80,97),(56,125,73,104)])

Matrix representation G ⊆ GL5(𝔽17)

160000
016000
001600
00010
00001
,
10000
0161500
01100
000314
00033
,
10000
0161500
01100
00001
000160
,
10000
09300
01800
00055
000512

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,16,1,0,0,0,15,1,0,0,0,0,0,3,3,0,0,0,14,3],[1,0,0,0,0,0,16,1,0,0,0,15,1,0,0,0,0,0,0,16,0,0,0,1,0],[1,0,0,0,0,0,9,1,0,0,0,3,8,0,0,0,0,0,5,5,0,0,0,5,12] >;

44 conjugacy classes

class 1 2A···2G4A···4L4M···4T8A···8P
order12···24···44···48···8
size11···12···28···82···2

44 irreducible representations

dim1111122222
type++++++-++-
imageC1C2C2C2C2D4Q8D4D8Q16
kernelC2×C82Q8C2×C4×C8C2×C2.D8C82Q8C2×C4⋊Q8C42C2×C8C22×C4C2×C4C2×C4
# reps1148228288

In GAP, Magma, Sage, TeX

C_2\times C_8\rtimes_2Q_8
% in TeX

G:=Group("C2xC8:2Q8");
// GroupNames label

G:=SmallGroup(128,1891);
// by ID

G=gap.SmallGroup(128,1891);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,120,758,520,4037,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽