p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q16⋊4Q8, C42.68C23, C4.1022- (1+4), C8⋊Q8.2C2, C8.7(C2×Q8), (Q82).5C2, C2.45(D4×Q8), C4⋊C4.390D4, Q8.12(C2×Q8), C8⋊3Q8.3C2, C8⋊4Q8.6C2, Q8.Q8.3C2, (C2×Q8).251D4, Q8⋊Q8.2C2, (C4×Q16).17C2, Q8⋊3Q8.7C2, C4.45(C22×Q8), C4⋊C4.276C23, C4⋊C8.146C22, (C2×C8).376C23, (C4×C8).203C22, (C2×C4).579C24, Q16⋊C4.2C2, C4.Q16.11C2, C4⋊Q8.208C22, C8⋊C4.72C22, C4.82(C8.C22), (C4×Q8).206C22, (C2×Q8).413C23, C2.D8.140C22, C4.Q8.119C22, C2.109(D4○SD16), (C2×Q16).164C22, Q8⋊C4.92C22, C22.839(C22×D4), C42.C2.77C22, (C2×C4).649(C2×D4), C2.91(C2×C8.C22), SmallGroup(128,2119)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 264 in 163 conjugacy classes, 96 normal (38 characteristic)
C1, C2 [×3], C4 [×2], C4 [×2], C4 [×15], C22, C8 [×2], C8 [×3], C2×C4 [×3], C2×C4 [×4], C2×C4 [×8], Q8 [×4], Q8 [×9], C42, C42 [×2], C42 [×6], C4⋊C4 [×3], C4⋊C4 [×6], C4⋊C4 [×14], C2×C8 [×2], C2×C8 [×2], Q16 [×4], C2×Q8 [×3], C2×Q8 [×4], C4×C8, C8⋊C4 [×2], Q8⋊C4 [×2], Q8⋊C4 [×4], C4⋊C8, C4⋊C8 [×2], C4.Q8 [×6], C2.D8, C2.D8 [×2], C4×Q8 [×3], C4×Q8 [×4], C4×Q8 [×2], C42.C2 [×2], C42.C2 [×2], C4⋊Q8 [×2], C4⋊Q8 [×2], C4⋊Q8 [×4], C2×Q16, C4×Q16, Q16⋊C4 [×2], C8⋊4Q8, Q8⋊Q8, Q8⋊Q8 [×2], C4.Q16, Q8.Q8 [×2], C8⋊3Q8, C8⋊Q8 [×2], Q8⋊3Q8, Q82, Q16⋊4Q8
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], Q8 [×4], C23 [×15], C2×D4 [×6], C2×Q8 [×6], C24, C8.C22 [×2], C22×D4, C22×Q8, 2- (1+4), D4×Q8, C2×C8.C22, D4○SD16, Q16⋊4Q8
Generators and relations
G = < a,b,c,d | a8=c4=1, b2=a4, d2=c2, bab-1=a-1, ac=ca, dad-1=a5, bc=cb, dbd-1=a4b, dcd-1=c-1 >
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 55 5 51)(2 54 6 50)(3 53 7 49)(4 52 8 56)(9 123 13 127)(10 122 14 126)(11 121 15 125)(12 128 16 124)(17 107 21 111)(18 106 22 110)(19 105 23 109)(20 112 24 108)(25 113 29 117)(26 120 30 116)(27 119 31 115)(28 118 32 114)(33 75 37 79)(34 74 38 78)(35 73 39 77)(36 80 40 76)(41 69 45 65)(42 68 46 72)(43 67 47 71)(44 66 48 70)(57 99 61 103)(58 98 62 102)(59 97 63 101)(60 104 64 100)(81 95 85 91)(82 94 86 90)(83 93 87 89)(84 92 88 96)
(1 57 42 107)(2 58 43 108)(3 59 44 109)(4 60 45 110)(5 61 46 111)(6 62 47 112)(7 63 48 105)(8 64 41 106)(9 82 115 38)(10 83 116 39)(11 84 117 40)(12 85 118 33)(13 86 119 34)(14 87 120 35)(15 88 113 36)(16 81 114 37)(17 51 103 72)(18 52 104 65)(19 53 97 66)(20 54 98 67)(21 55 99 68)(22 56 100 69)(23 49 101 70)(24 50 102 71)(25 76 121 92)(26 77 122 93)(27 78 123 94)(28 79 124 95)(29 80 125 96)(30 73 126 89)(31 74 127 90)(32 75 128 91)
(1 74 42 90)(2 79 43 95)(3 76 44 92)(4 73 45 89)(5 78 46 94)(6 75 47 91)(7 80 48 96)(8 77 41 93)(9 103 115 17)(10 100 116 22)(11 97 117 19)(12 102 118 24)(13 99 119 21)(14 104 120 18)(15 101 113 23)(16 98 114 20)(25 109 121 59)(26 106 122 64)(27 111 123 61)(28 108 124 58)(29 105 125 63)(30 110 126 60)(31 107 127 57)(32 112 128 62)(33 71 85 50)(34 68 86 55)(35 65 87 52)(36 70 88 49)(37 67 81 54)(38 72 82 51)(39 69 83 56)(40 66 84 53)
G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,55,5,51)(2,54,6,50)(3,53,7,49)(4,52,8,56)(9,123,13,127)(10,122,14,126)(11,121,15,125)(12,128,16,124)(17,107,21,111)(18,106,22,110)(19,105,23,109)(20,112,24,108)(25,113,29,117)(26,120,30,116)(27,119,31,115)(28,118,32,114)(33,75,37,79)(34,74,38,78)(35,73,39,77)(36,80,40,76)(41,69,45,65)(42,68,46,72)(43,67,47,71)(44,66,48,70)(57,99,61,103)(58,98,62,102)(59,97,63,101)(60,104,64,100)(81,95,85,91)(82,94,86,90)(83,93,87,89)(84,92,88,96), (1,57,42,107)(2,58,43,108)(3,59,44,109)(4,60,45,110)(5,61,46,111)(6,62,47,112)(7,63,48,105)(8,64,41,106)(9,82,115,38)(10,83,116,39)(11,84,117,40)(12,85,118,33)(13,86,119,34)(14,87,120,35)(15,88,113,36)(16,81,114,37)(17,51,103,72)(18,52,104,65)(19,53,97,66)(20,54,98,67)(21,55,99,68)(22,56,100,69)(23,49,101,70)(24,50,102,71)(25,76,121,92)(26,77,122,93)(27,78,123,94)(28,79,124,95)(29,80,125,96)(30,73,126,89)(31,74,127,90)(32,75,128,91), (1,74,42,90)(2,79,43,95)(3,76,44,92)(4,73,45,89)(5,78,46,94)(6,75,47,91)(7,80,48,96)(8,77,41,93)(9,103,115,17)(10,100,116,22)(11,97,117,19)(12,102,118,24)(13,99,119,21)(14,104,120,18)(15,101,113,23)(16,98,114,20)(25,109,121,59)(26,106,122,64)(27,111,123,61)(28,108,124,58)(29,105,125,63)(30,110,126,60)(31,107,127,57)(32,112,128,62)(33,71,85,50)(34,68,86,55)(35,65,87,52)(36,70,88,49)(37,67,81,54)(38,72,82,51)(39,69,83,56)(40,66,84,53)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,55,5,51)(2,54,6,50)(3,53,7,49)(4,52,8,56)(9,123,13,127)(10,122,14,126)(11,121,15,125)(12,128,16,124)(17,107,21,111)(18,106,22,110)(19,105,23,109)(20,112,24,108)(25,113,29,117)(26,120,30,116)(27,119,31,115)(28,118,32,114)(33,75,37,79)(34,74,38,78)(35,73,39,77)(36,80,40,76)(41,69,45,65)(42,68,46,72)(43,67,47,71)(44,66,48,70)(57,99,61,103)(58,98,62,102)(59,97,63,101)(60,104,64,100)(81,95,85,91)(82,94,86,90)(83,93,87,89)(84,92,88,96), (1,57,42,107)(2,58,43,108)(3,59,44,109)(4,60,45,110)(5,61,46,111)(6,62,47,112)(7,63,48,105)(8,64,41,106)(9,82,115,38)(10,83,116,39)(11,84,117,40)(12,85,118,33)(13,86,119,34)(14,87,120,35)(15,88,113,36)(16,81,114,37)(17,51,103,72)(18,52,104,65)(19,53,97,66)(20,54,98,67)(21,55,99,68)(22,56,100,69)(23,49,101,70)(24,50,102,71)(25,76,121,92)(26,77,122,93)(27,78,123,94)(28,79,124,95)(29,80,125,96)(30,73,126,89)(31,74,127,90)(32,75,128,91), (1,74,42,90)(2,79,43,95)(3,76,44,92)(4,73,45,89)(5,78,46,94)(6,75,47,91)(7,80,48,96)(8,77,41,93)(9,103,115,17)(10,100,116,22)(11,97,117,19)(12,102,118,24)(13,99,119,21)(14,104,120,18)(15,101,113,23)(16,98,114,20)(25,109,121,59)(26,106,122,64)(27,111,123,61)(28,108,124,58)(29,105,125,63)(30,110,126,60)(31,107,127,57)(32,112,128,62)(33,71,85,50)(34,68,86,55)(35,65,87,52)(36,70,88,49)(37,67,81,54)(38,72,82,51)(39,69,83,56)(40,66,84,53) );
G=PermutationGroup([(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,55,5,51),(2,54,6,50),(3,53,7,49),(4,52,8,56),(9,123,13,127),(10,122,14,126),(11,121,15,125),(12,128,16,124),(17,107,21,111),(18,106,22,110),(19,105,23,109),(20,112,24,108),(25,113,29,117),(26,120,30,116),(27,119,31,115),(28,118,32,114),(33,75,37,79),(34,74,38,78),(35,73,39,77),(36,80,40,76),(41,69,45,65),(42,68,46,72),(43,67,47,71),(44,66,48,70),(57,99,61,103),(58,98,62,102),(59,97,63,101),(60,104,64,100),(81,95,85,91),(82,94,86,90),(83,93,87,89),(84,92,88,96)], [(1,57,42,107),(2,58,43,108),(3,59,44,109),(4,60,45,110),(5,61,46,111),(6,62,47,112),(7,63,48,105),(8,64,41,106),(9,82,115,38),(10,83,116,39),(11,84,117,40),(12,85,118,33),(13,86,119,34),(14,87,120,35),(15,88,113,36),(16,81,114,37),(17,51,103,72),(18,52,104,65),(19,53,97,66),(20,54,98,67),(21,55,99,68),(22,56,100,69),(23,49,101,70),(24,50,102,71),(25,76,121,92),(26,77,122,93),(27,78,123,94),(28,79,124,95),(29,80,125,96),(30,73,126,89),(31,74,127,90),(32,75,128,91)], [(1,74,42,90),(2,79,43,95),(3,76,44,92),(4,73,45,89),(5,78,46,94),(6,75,47,91),(7,80,48,96),(8,77,41,93),(9,103,115,17),(10,100,116,22),(11,97,117,19),(12,102,118,24),(13,99,119,21),(14,104,120,18),(15,101,113,23),(16,98,114,20),(25,109,121,59),(26,106,122,64),(27,111,123,61),(28,108,124,58),(29,105,125,63),(30,110,126,60),(31,107,127,57),(32,112,128,62),(33,71,85,50),(34,68,86,55),(35,65,87,52),(36,70,88,49),(37,67,81,54),(38,72,82,51),(39,69,83,56),(40,66,84,53)])
Matrix representation ►G ⊆ GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 10 |
0 | 0 | 5 | 12 | 10 | 7 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 12 | 10 | 12 | 10 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 11 | 3 | 4 |
0 | 0 | 4 | 15 | 10 | 10 |
0 | 0 | 4 | 10 | 16 | 16 |
0 | 0 | 5 | 14 | 12 | 15 |
0 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 16 | 1 | 15 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 4 | 8 | 12 |
0 | 0 | 16 | 12 | 3 | 6 |
0 | 0 | 16 | 9 | 10 | 13 |
0 | 0 | 3 | 6 | 13 | 9 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,5,12,12,0,0,5,12,5,10,0,0,0,10,0,12,0,0,10,7,0,10],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,5,4,4,5,0,0,11,15,10,14,0,0,3,10,16,12,0,0,4,10,16,15],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,16,16,0,0,0,16,0,1,0,0,1,1,0,0,0,0,0,15,0,1],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,3,16,16,3,0,0,4,12,9,6,0,0,8,3,10,13,0,0,12,6,13,9] >;
Character table of Q16⋊4Q8
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 4R | 4S | 8A | 8B | 8C | 8D | 8E | 8F | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ25 | 4 | -4 | -4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ26 | 4 | -4 | 4 | -4 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- (1+4), Schur index 2 |
ρ27 | 4 | -4 | -4 | 4 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | 0 | 0 | complex lifted from D4○SD16 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | 0 | 0 | complex lifted from D4○SD16 |
In GAP, Magma, Sage, TeX
Q_{16}\rtimes_4Q_8
% in TeX
G:=Group("Q16:4Q8");
// GroupNames label
G:=SmallGroup(128,2119);
// by ID
G=gap.SmallGroup(128,2119);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,560,253,120,758,723,352,346,80,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=c^4=1,b^2=a^4,d^2=c^2,b*a*b^-1=a^-1,a*c=c*a,d*a*d^-1=a^5,b*c=c*b,d*b*d^-1=a^4*b,d*c*d^-1=c^-1>;
// generators/relations