Copied to
clipboard

?

G = Q8×D8order 128 = 27

Direct product of Q8 and D8

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q8×D8, C42.519C23, C4.932- (1+4), C88(C2×Q8), (C8×Q8)⋊8C2, D44(C2×Q8), (D4×Q8)⋊13C2, (C4×D8).9C2, C4.47(C2×D8), C2.36(D4×Q8), C4⋊C4.280D4, C82Q821C2, D4⋊Q817C2, (C4×C8).95C22, (C2×Q8).270D4, C2.66(Q8○D8), C2.22(C22×D8), C4.36(C22×Q8), C4⋊C4.267C23, C4⋊C8.304C22, (C2×C4).570C24, (C2×C8).210C23, C4⋊Q8.199C22, C2.D8.70C22, (C4×D4).208C22, (C2×D4).433C23, (C2×D8).176C22, (C4×Q8).310C22, C22.830(C22×D4), D4⋊C4.172C22, (C2×C4).1102(C2×D4), SmallGroup(128,2110)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — Q8×D8
C1C2C4C2×C4C42C4×D4D4×Q8 — Q8×D8
C1C2C2×C4 — Q8×D8
C1C22C4×Q8 — Q8×D8
C1C2C2C2×C4 — Q8×D8

Subgroups: 392 in 202 conjugacy classes, 104 normal (14 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×6], C4 [×9], C22, C22 [×8], C8 [×2], C8 [×3], C2×C4, C2×C4 [×6], C2×C4 [×18], D4 [×4], D4 [×2], Q8 [×4], Q8 [×12], C23 [×2], C42 [×3], C22⋊C4 [×6], C4⋊C4 [×9], C4⋊C4 [×6], C2×C8, C2×C8 [×3], D8 [×4], C22×C4 [×6], C2×D4 [×2], C2×Q8, C2×Q8 [×14], C4×C8 [×3], D4⋊C4 [×6], C4⋊C8 [×3], C2.D8 [×9], C4×D4 [×6], C4×Q8, C22⋊Q8 [×6], C4⋊Q8 [×6], C2×D8, C22×Q8 [×2], C4×D8 [×3], C8×Q8, D4⋊Q8 [×6], C82Q8 [×3], D4×Q8 [×2], Q8×D8

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], Q8 [×4], C23 [×15], D8 [×4], C2×D4 [×6], C2×Q8 [×6], C24, C2×D8 [×6], C22×D4, C22×Q8, 2- (1+4), D4×Q8, C22×D8, Q8○D8, Q8×D8

Generators and relations
 G = < a,b,c,d | a4=c8=d2=1, b2=a2, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Smallest permutation representation
On 64 points
Generators in S64
(1 39 29 14)(2 40 30 15)(3 33 31 16)(4 34 32 9)(5 35 25 10)(6 36 26 11)(7 37 27 12)(8 38 28 13)(17 56 45 60)(18 49 46 61)(19 50 47 62)(20 51 48 63)(21 52 41 64)(22 53 42 57)(23 54 43 58)(24 55 44 59)
(1 57 29 53)(2 58 30 54)(3 59 31 55)(4 60 32 56)(5 61 25 49)(6 62 26 50)(7 63 27 51)(8 64 28 52)(9 17 34 45)(10 18 35 46)(11 19 36 47)(12 20 37 48)(13 21 38 41)(14 22 39 42)(15 23 40 43)(16 24 33 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 32)(7 31)(8 30)(9 36)(10 35)(11 34)(12 33)(13 40)(14 39)(15 38)(16 37)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 48)(49 61)(50 60)(51 59)(52 58)(53 57)(54 64)(55 63)(56 62)

G:=sub<Sym(64)| (1,39,29,14)(2,40,30,15)(3,33,31,16)(4,34,32,9)(5,35,25,10)(6,36,26,11)(7,37,27,12)(8,38,28,13)(17,56,45,60)(18,49,46,61)(19,50,47,62)(20,51,48,63)(21,52,41,64)(22,53,42,57)(23,54,43,58)(24,55,44,59), (1,57,29,53)(2,58,30,54)(3,59,31,55)(4,60,32,56)(5,61,25,49)(6,62,26,50)(7,63,27,51)(8,64,28,52)(9,17,34,45)(10,18,35,46)(11,19,36,47)(12,20,37,48)(13,21,38,41)(14,22,39,42)(15,23,40,43)(16,24,33,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,29)(2,28)(3,27)(4,26)(5,25)(6,32)(7,31)(8,30)(9,36)(10,35)(11,34)(12,33)(13,40)(14,39)(15,38)(16,37)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,48)(49,61)(50,60)(51,59)(52,58)(53,57)(54,64)(55,63)(56,62)>;

G:=Group( (1,39,29,14)(2,40,30,15)(3,33,31,16)(4,34,32,9)(5,35,25,10)(6,36,26,11)(7,37,27,12)(8,38,28,13)(17,56,45,60)(18,49,46,61)(19,50,47,62)(20,51,48,63)(21,52,41,64)(22,53,42,57)(23,54,43,58)(24,55,44,59), (1,57,29,53)(2,58,30,54)(3,59,31,55)(4,60,32,56)(5,61,25,49)(6,62,26,50)(7,63,27,51)(8,64,28,52)(9,17,34,45)(10,18,35,46)(11,19,36,47)(12,20,37,48)(13,21,38,41)(14,22,39,42)(15,23,40,43)(16,24,33,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,29)(2,28)(3,27)(4,26)(5,25)(6,32)(7,31)(8,30)(9,36)(10,35)(11,34)(12,33)(13,40)(14,39)(15,38)(16,37)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,48)(49,61)(50,60)(51,59)(52,58)(53,57)(54,64)(55,63)(56,62) );

G=PermutationGroup([(1,39,29,14),(2,40,30,15),(3,33,31,16),(4,34,32,9),(5,35,25,10),(6,36,26,11),(7,37,27,12),(8,38,28,13),(17,56,45,60),(18,49,46,61),(19,50,47,62),(20,51,48,63),(21,52,41,64),(22,53,42,57),(23,54,43,58),(24,55,44,59)], [(1,57,29,53),(2,58,30,54),(3,59,31,55),(4,60,32,56),(5,61,25,49),(6,62,26,50),(7,63,27,51),(8,64,28,52),(9,17,34,45),(10,18,35,46),(11,19,36,47),(12,20,37,48),(13,21,38,41),(14,22,39,42),(15,23,40,43),(16,24,33,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,32),(7,31),(8,30),(9,36),(10,35),(11,34),(12,33),(13,40),(14,39),(15,38),(16,37),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,48),(49,61),(50,60),(51,59),(52,58),(53,57),(54,64),(55,63),(56,62)])

Matrix representation G ⊆ GL4(𝔽17) generated by

16000
01600
00130
00104
,
16000
01600
00112
0076
,
14300
141400
0010
0001
,
1000
01600
00160
00016
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,13,10,0,0,0,4],[16,0,0,0,0,16,0,0,0,0,11,7,0,0,2,6],[14,14,0,0,3,14,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16] >;

35 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4H4I4J4K4L···4Q8A8B8C8D8E···8J
order122222224···44444···488888···8
size111144442···24448···822224···4

35 irreducible representations

dim111111222244
type+++++++-++--
imageC1C2C2C2C2C2D4Q8D4D82- (1+4)Q8○D8
kernelQ8×D8C4×D8C8×Q8D4⋊Q8C82Q8D4×Q8C4⋊C4D8C2×Q8Q8C4C2
# reps131632341812

In GAP, Magma, Sage, TeX

Q_8\times D_8
% in TeX

G:=Group("Q8xD8");
// GroupNames label

G:=SmallGroup(128,2110);
// by ID

G=gap.SmallGroup(128,2110);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,120,758,346,80,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=d^2=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽