p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4⋊1Q8, C4.13D8, C42.22C22, C4⋊C8⋊4C2, C4⋊Q8⋊3C2, C2.D8⋊4C2, C2.7(C2×D8), (C4×D4).7C2, (C2×C4).33D4, C4.11(C2×Q8), (C2×C8).5C22, D4⋊C4.3C2, C4.23(C4○D4), C4⋊C4.11C22, (C2×C4).99C23, C22.95(C2×D4), (C2×D4).57C22, C2.12(C22⋊Q8), C2.14(C8.C22), SmallGroup(64,155)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4⋊Q8
G = < a,b,c,d | a4=b2=c4=1, d2=c2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c-1 >
Character table of D4⋊Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ16 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 6)(2 5)(3 8)(4 7)(9 16)(10 15)(11 14)(12 13)(17 23)(18 22)(19 21)(20 24)(25 31)(26 30)(27 29)(28 32)
(1 15 7 11)(2 16 8 12)(3 13 5 9)(4 14 6 10)(17 25 21 29)(18 26 22 30)(19 27 23 31)(20 28 24 32)
(1 21 7 17)(2 24 8 20)(3 23 5 19)(4 22 6 18)(9 31 13 27)(10 30 14 26)(11 29 15 25)(12 32 16 28)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6)(2,5)(3,8)(4,7)(9,16)(10,15)(11,14)(12,13)(17,23)(18,22)(19,21)(20,24)(25,31)(26,30)(27,29)(28,32), (1,15,7,11)(2,16,8,12)(3,13,5,9)(4,14,6,10)(17,25,21,29)(18,26,22,30)(19,27,23,31)(20,28,24,32), (1,21,7,17)(2,24,8,20)(3,23,5,19)(4,22,6,18)(9,31,13,27)(10,30,14,26)(11,29,15,25)(12,32,16,28)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6)(2,5)(3,8)(4,7)(9,16)(10,15)(11,14)(12,13)(17,23)(18,22)(19,21)(20,24)(25,31)(26,30)(27,29)(28,32), (1,15,7,11)(2,16,8,12)(3,13,5,9)(4,14,6,10)(17,25,21,29)(18,26,22,30)(19,27,23,31)(20,28,24,32), (1,21,7,17)(2,24,8,20)(3,23,5,19)(4,22,6,18)(9,31,13,27)(10,30,14,26)(11,29,15,25)(12,32,16,28) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,6),(2,5),(3,8),(4,7),(9,16),(10,15),(11,14),(12,13),(17,23),(18,22),(19,21),(20,24),(25,31),(26,30),(27,29),(28,32)], [(1,15,7,11),(2,16,8,12),(3,13,5,9),(4,14,6,10),(17,25,21,29),(18,26,22,30),(19,27,23,31),(20,28,24,32)], [(1,21,7,17),(2,24,8,20),(3,23,5,19),(4,22,6,18),(9,31,13,27),(10,30,14,26),(11,29,15,25),(12,32,16,28)]])
D4⋊Q8 is a maximal subgroup of
D4.D8 D4⋊3Q16 D4⋊4Q16 D4⋊4SD16 C42.447D4 C42.219D4 C42.448D4 C42.20C23 C42.22C23 C42.221D4 C42.451D4 C42.228D4 C42.233D4 C42.352C23 C42.358C23 C42.278D4 C42.285D4 C42.293D4 C42.296D4 C42.299D4 C42.302D4 C4.2- 1+4 C42.29C23 D4⋊4D8 C42.467C23 C42.49C23 C42.54C23 C42.473C23 C42.479C23 D4⋊5D8 C42.489C23 C42.494C23 C42.495C23 Q8⋊4D8 C42.505C23 C42.508C23 C42.509C23 C42.511C23 C42.516C23 Q8×D8 SD16⋊4Q8
D4p⋊Q8: D8⋊4Q8 D8⋊5Q8 D12⋊4Q8 D12⋊2Q8 D12⋊6Q8 D20⋊4Q8 D20⋊2Q8 D20⋊6Q8 ...
C4p.D8: C8.28D8 C8.D8 C12.50D8 C20.50D8 C28.50D8 ...
C4p⋊Q8⋊C2: C42.287D4 C42.291D4 C42.423C23 C42.425C23 C42.60C23 C42.61C23 SD16⋊Q8 SD16⋊2Q8 ...
C2.(D4.pD4): Q8.D8 C42.207C23 D4.7D8 C42.213C23 C8⋊8D8 D4.3SD16 D4.Q16 C8⋊D8 ...
D4⋊Q8 is a maximal quotient of
C2.(C4×D8) C2.D8⋊4C4 C42.29Q8 C4⋊C4⋊Q8 (C2×C4).23D8 (C2×C4).26D8 (C2×C4).27D8 (C2×C4).28D8
D4p⋊Q8: D8⋊1Q8 D8⋊Q8 D12⋊4Q8 D12⋊2Q8 D12⋊6Q8 D20⋊4Q8 D20⋊2Q8 D20⋊6Q8 ...
C42.D2p: C42.98D4 C42.122D4 Q16⋊Q8 C4.Q32 D8.Q8 Q16.Q8 C12.50D8 C20.50D8 ...
(Cp×D4)⋊Q8: (C2×D4)⋊Q8 Dic3.D8 Dic5.14D8 Dic7.D8 ...
Matrix representation of D4⋊Q8 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 15 |
0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 |
11 | 16 | 0 | 0 |
0 | 0 | 16 | 15 |
0 | 0 | 0 | 1 |
13 | 0 | 0 | 0 |
7 | 4 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
3 | 1 | 0 | 0 |
7 | 14 | 0 | 0 |
0 | 0 | 11 | 11 |
0 | 0 | 3 | 6 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,16,1,0,0,15,1],[1,11,0,0,0,16,0,0,0,0,16,0,0,0,15,1],[13,7,0,0,0,4,0,0,0,0,16,0,0,0,0,16],[3,7,0,0,1,14,0,0,0,0,11,3,0,0,11,6] >;
D4⋊Q8 in GAP, Magma, Sage, TeX
D_4\rtimes Q_8
% in TeX
G:=Group("D4:Q8");
// GroupNames label
G:=SmallGroup(64,155);
// by ID
G=gap.SmallGroup(64,155);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,48,121,55,362,1444,376,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^4=1,d^2=c^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of D4⋊Q8 in TeX
Character table of D4⋊Q8 in TeX