direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×D4.4D4, M4(2).8C23, C4○D4.32D4, D4.12(C2×D4), (C2×C8).351D4, C8.112(C2×D4), Q8.12(C2×D4), (C2×D4).224D4, C8○D4⋊12C22, (C2×D8)⋊48C22, (C22×D8)⋊17C2, (C2×C4).16C24, (C2×Q8).179D4, C8⋊C22⋊10C22, (C2×C8).261C23, C4○D4.28C23, (C2×D4).71C23, C4.163(C22×D4), C4.114(C4⋊D4), C8.C4⋊16C22, C4.D4⋊13C22, C23.317(C4○D4), C22.90(C4⋊D4), (C22×C4).991C23, (C22×C8).265C22, (C22×D4).353C22, (C2×M4(2)).59C22, (C2×C8○D4)⋊8C2, (C2×C8⋊C22)⋊20C2, C2.87(C2×C4⋊D4), (C2×C8.C4)⋊26C2, (C2×C4).1428(C2×D4), (C2×C4.D4)⋊11C2, C22.19(C2×C4○D4), (C2×C4).290(C4○D4), (C2×C4○D4).305C22, SmallGroup(128,1797)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×D4.4D4
G = < a,b,c,d,e | a2=b4=c2=e2=1, d4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, cd=dc, ece=bc, ede=b2d3 >
Subgroups: 540 in 244 conjugacy classes, 100 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C2×C8, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, C4.D4, C8.C4, C22×C8, C22×C8, C2×M4(2), C2×M4(2), C2×M4(2), C8○D4, C8○D4, C2×D8, C2×D8, C2×SD16, C8⋊C22, C8⋊C22, C22×D4, C2×C4○D4, C2×C4.D4, C2×C8.C4, D4.4D4, C2×C8○D4, C22×D8, C2×C8⋊C22, C2×D4.4D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C22×D4, C2×C4○D4, D4.4D4, C2×C4⋊D4, C2×D4.4D4
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 31)(18 32)(19 25)(20 26)(21 27)(22 28)(23 29)(24 30)
(1 9 5 13)(2 10 6 14)(3 11 7 15)(4 12 8 16)(17 25 21 29)(18 26 22 30)(19 27 23 31)(20 28 24 32)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 31)(10 32)(11 25)(12 26)(13 27)(14 28)(15 29)(16 30)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 7)(2 6)(3 5)(9 11)(12 16)(13 15)(17 31)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)(24 32)
G:=sub<Sym(32)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30), (1,9,5,13)(2,10,6,14)(3,11,7,15)(4,12,8,16)(17,25,21,29)(18,26,22,30)(19,27,23,31)(20,28,24,32), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,7)(2,6)(3,5)(9,11)(12,16)(13,15)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,32)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30), (1,9,5,13)(2,10,6,14)(3,11,7,15)(4,12,8,16)(17,25,21,29)(18,26,22,30)(19,27,23,31)(20,28,24,32), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,7)(2,6)(3,5)(9,11)(12,16)(13,15)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,32) );
G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,31),(18,32),(19,25),(20,26),(21,27),(22,28),(23,29),(24,30)], [(1,9,5,13),(2,10,6,14),(3,11,7,15),(4,12,8,16),(17,25,21,29),(18,26,22,30),(19,27,23,31),(20,28,24,32)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,31),(10,32),(11,25),(12,26),(13,27),(14,28),(15,29),(16,30)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,7),(2,6),(3,5),(9,11),(12,16),(13,15),(17,31),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25),(24,32)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | ··· | 8J | 8K | 8L | 8M | 8N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | C4○D4 | C4○D4 | D4.4D4 |
kernel | C2×D4.4D4 | C2×C4.D4 | C2×C8.C4 | D4.4D4 | C2×C8○D4 | C22×D8 | C2×C8⋊C22 | C2×C8 | C2×D4 | C2×Q8 | C4○D4 | C2×C4 | C23 | C2 |
# reps | 1 | 2 | 1 | 8 | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 2 | 2 | 4 |
Matrix representation of C2×D4.4D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 2 |
0 | 0 | 0 | 16 | 16 | 16 |
1 | 15 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 2 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 16 | 16 | 16 |
13 | 8 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 14 | 0 | 0 |
0 | 0 | 3 | 14 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 6 |
0 | 0 | 14 | 0 | 14 | 11 |
16 | 0 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 16 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,1,0,0,0,1,0,1,16,0,0,0,0,1,16,0,0,0,0,2,16],[1,0,0,0,0,0,15,16,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,16,0,0,1,1,0,16,0,0,2,0,0,16],[13,0,0,0,0,0,8,4,0,0,0,0,0,0,14,3,3,14,0,0,14,14,3,0,0,0,0,0,0,14,0,0,0,0,6,11],[16,16,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,0,0,0,1,16,0,0,0,0,0,16] >;
C2×D4.4D4 in GAP, Magma, Sage, TeX
C_2\times D_4._4D_4
% in TeX
G:=Group("C2xD4.4D4");
// GroupNames label
G:=SmallGroup(128,1797);
// by ID
G=gap.SmallGroup(128,1797);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,568,758,2804,172,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=e^2=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b*c,e*d*e=b^2*d^3>;
// generators/relations