Copied to
clipboard

G = D4.D10order 160 = 25·5

1st non-split extension by D4 of D10 acting via D10/C10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.6D10, C20.15D4, D20:6C22, C20.12C23, Dic10:5C22, D4:D5:5C2, (C2xD4):2D5, C4oD20:3C2, (D4xC10):2C2, C5:4(C8:C22), D4.D5:5C2, C5:2C8:3C22, C10.45(C2xD4), (C2xC4).17D10, (C2xC10).39D4, C4.Dic5:6C2, C4.16(C5:D4), (C5xD4).6C22, C4.12(C22xD5), (C2xC20).30C22, C22.10(C5:D4), C2.9(C2xC5:D4), SmallGroup(160,153)

Series: Derived Chief Lower central Upper central

C1C20 — D4.D10
C1C5C10C20D20C4oD20 — D4.D10
C5C10C20 — D4.D10
C1C2C2xC4C2xD4

Generators and relations for D4.D10
 G = < a,b,c,d | a4=b2=1, c10=d2=a2, bab=dad-1=a-1, ac=ca, cbc-1=a2b, dbd-1=a-1b, dcd-1=c9 >

Subgroups: 208 in 68 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2xC4, C2xC4, D4, D4, Q8, C23, D5, C10, C10, M4(2), D8, SD16, C2xD4, C4oD4, Dic5, C20, D10, C2xC10, C2xC10, C8:C22, C5:2C8, Dic10, C4xD5, D20, C5:D4, C2xC20, C5xD4, C5xD4, C22xC10, C4.Dic5, D4:D5, D4.D5, C4oD20, D4xC10, D4.D10
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, D10, C8:C22, C5:D4, C22xD5, C2xC5:D4, D4.D10

Smallest permutation representation of D4.D10
On 40 points
Generators in S40
(1 6 11 16)(2 7 12 17)(3 8 13 18)(4 9 14 19)(5 10 15 20)(21 36 31 26)(22 37 32 27)(23 38 33 28)(24 39 34 29)(25 40 35 30)
(1 16)(2 7)(3 18)(4 9)(5 20)(6 11)(8 13)(10 15)(12 17)(14 19)(22 32)(24 34)(26 36)(28 38)(30 40)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 21 11 31)(2 30 12 40)(3 39 13 29)(4 28 14 38)(5 37 15 27)(6 26 16 36)(7 35 17 25)(8 24 18 34)(9 33 19 23)(10 22 20 32)

G:=sub<Sym(40)| (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30), (1,16)(2,7)(3,18)(4,9)(5,20)(6,11)(8,13)(10,15)(12,17)(14,19)(22,32)(24,34)(26,36)(28,38)(30,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,21,11,31)(2,30,12,40)(3,39,13,29)(4,28,14,38)(5,37,15,27)(6,26,16,36)(7,35,17,25)(8,24,18,34)(9,33,19,23)(10,22,20,32)>;

G:=Group( (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30), (1,16)(2,7)(3,18)(4,9)(5,20)(6,11)(8,13)(10,15)(12,17)(14,19)(22,32)(24,34)(26,36)(28,38)(30,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,21,11,31)(2,30,12,40)(3,39,13,29)(4,28,14,38)(5,37,15,27)(6,26,16,36)(7,35,17,25)(8,24,18,34)(9,33,19,23)(10,22,20,32) );

G=PermutationGroup([[(1,6,11,16),(2,7,12,17),(3,8,13,18),(4,9,14,19),(5,10,15,20),(21,36,31,26),(22,37,32,27),(23,38,33,28),(24,39,34,29),(25,40,35,30)], [(1,16),(2,7),(3,18),(4,9),(5,20),(6,11),(8,13),(10,15),(12,17),(14,19),(22,32),(24,34),(26,36),(28,38),(30,40)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,21,11,31),(2,30,12,40),(3,39,13,29),(4,28,14,38),(5,37,15,27),(6,26,16,36),(7,35,17,25),(8,24,18,34),(9,33,19,23),(10,22,20,32)]])

D4.D10 is a maximal subgroup of
D20.2D4  D20.3D4  D20.14D4  D20:5D4  C40.23D4  C40.44D4  D20:18D4  D20.38D4  D8:13D10  D20.29D4  D5xC8:C22  SD16:D10  C20.C24  D20.32C23  D20.33C23  D20:21D6  D60:36C22  D20:10D6  D12.9D10  D4.D30
D4.D10 is a maximal quotient of
C20.47(C4:C4)  C4oD20:9C4  C4:C4.228D10  C4:C4.230D10  D4.3Dic10  C42.48D10  D4.1D20  C42.51D10  (C2xD4).D10  D20:17D4  C4:D4:D5  C4.(D4xD5)  C42.72D10  C20:2D8  C42.74D10  Dic10:9D4  C42.76D10  D20:5Q8  C42.82D10  Dic10:5Q8  (D4xC10):18C4  (C2xC10):8D8  (C5xD4).31D4  D20:21D6  D60:36C22  D20:10D6  D12.9D10  D4.D30

31 conjugacy classes

class 1 2A2B2C2D2E4A4B4C5A5B8A8B10A···10F10G···10N20A20B20C20D
order122222444558810···1010···1020202020
size112442022202220202···24···44444

31 irreducible representations

dim111111222222244
type++++++++++++
imageC1C2C2C2C2C2D4D4D5D10D10C5:D4C5:D4C8:C22D4.D10
kernelD4.D10C4.Dic5D4:D5D4.D5C4oD20D4xC10C20C2xC10C2xD4C2xC4D4C4C22C5C1
# reps112211112244414

Matrix representation of D4.D10 in GL6(F41)

100000
010000
00403800
0028100
000013
00001340
,
4000000
0400000
00403800
000100
0000400
0000281
,
060000
3470000
00403800
0028100
00004038
0000281
,
9160000
36320000
00004038
0000281
00403800
0028100

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,28,0,0,0,0,38,1,0,0,0,0,0,0,1,13,0,0,0,0,3,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,38,1,0,0,0,0,0,0,40,28,0,0,0,0,0,1],[0,34,0,0,0,0,6,7,0,0,0,0,0,0,40,28,0,0,0,0,38,1,0,0,0,0,0,0,40,28,0,0,0,0,38,1],[9,36,0,0,0,0,16,32,0,0,0,0,0,0,0,0,40,28,0,0,0,0,38,1,0,0,40,28,0,0,0,0,38,1,0,0] >;

D4.D10 in GAP, Magma, Sage, TeX

D_4.D_{10}
% in TeX

G:=Group("D4.D10");
// GroupNames label

G:=SmallGroup(160,153);
// by ID

G=gap.SmallGroup(160,153);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,103,218,188,579,159,69,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^10=d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^9>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<