metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4.6D10, C20.15D4, D20:6C22, C20.12C23, Dic10:5C22, D4:D5:5C2, (C2xD4):2D5, C4oD20:3C2, (D4xC10):2C2, C5:4(C8:C22), D4.D5:5C2, C5:2C8:3C22, C10.45(C2xD4), (C2xC4).17D10, (C2xC10).39D4, C4.Dic5:6C2, C4.16(C5:D4), (C5xD4).6C22, C4.12(C22xD5), (C2xC20).30C22, C22.10(C5:D4), C2.9(C2xC5:D4), SmallGroup(160,153)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4.D10
G = < a,b,c,d | a4=b2=1, c10=d2=a2, bab=dad-1=a-1, ac=ca, cbc-1=a2b, dbd-1=a-1b, dcd-1=c9 >
Subgroups: 208 in 68 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2xC4, C2xC4, D4, D4, Q8, C23, D5, C10, C10, M4(2), D8, SD16, C2xD4, C4oD4, Dic5, C20, D10, C2xC10, C2xC10, C8:C22, C5:2C8, Dic10, C4xD5, D20, C5:D4, C2xC20, C5xD4, C5xD4, C22xC10, C4.Dic5, D4:D5, D4.D5, C4oD20, D4xC10, D4.D10
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, D10, C8:C22, C5:D4, C22xD5, C2xC5:D4, D4.D10
(1 6 11 16)(2 7 12 17)(3 8 13 18)(4 9 14 19)(5 10 15 20)(21 36 31 26)(22 37 32 27)(23 38 33 28)(24 39 34 29)(25 40 35 30)
(1 16)(2 7)(3 18)(4 9)(5 20)(6 11)(8 13)(10 15)(12 17)(14 19)(22 32)(24 34)(26 36)(28 38)(30 40)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 21 11 31)(2 30 12 40)(3 39 13 29)(4 28 14 38)(5 37 15 27)(6 26 16 36)(7 35 17 25)(8 24 18 34)(9 33 19 23)(10 22 20 32)
G:=sub<Sym(40)| (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30), (1,16)(2,7)(3,18)(4,9)(5,20)(6,11)(8,13)(10,15)(12,17)(14,19)(22,32)(24,34)(26,36)(28,38)(30,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,21,11,31)(2,30,12,40)(3,39,13,29)(4,28,14,38)(5,37,15,27)(6,26,16,36)(7,35,17,25)(8,24,18,34)(9,33,19,23)(10,22,20,32)>;
G:=Group( (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30), (1,16)(2,7)(3,18)(4,9)(5,20)(6,11)(8,13)(10,15)(12,17)(14,19)(22,32)(24,34)(26,36)(28,38)(30,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,21,11,31)(2,30,12,40)(3,39,13,29)(4,28,14,38)(5,37,15,27)(6,26,16,36)(7,35,17,25)(8,24,18,34)(9,33,19,23)(10,22,20,32) );
G=PermutationGroup([[(1,6,11,16),(2,7,12,17),(3,8,13,18),(4,9,14,19),(5,10,15,20),(21,36,31,26),(22,37,32,27),(23,38,33,28),(24,39,34,29),(25,40,35,30)], [(1,16),(2,7),(3,18),(4,9),(5,20),(6,11),(8,13),(10,15),(12,17),(14,19),(22,32),(24,34),(26,36),(28,38),(30,40)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,21,11,31),(2,30,12,40),(3,39,13,29),(4,28,14,38),(5,37,15,27),(6,26,16,36),(7,35,17,25),(8,24,18,34),(9,33,19,23),(10,22,20,32)]])
D4.D10 is a maximal subgroup of
D20.2D4 D20.3D4 D20.14D4 D20:5D4 C40.23D4 C40.44D4 D20:18D4 D20.38D4 D8:13D10 D20.29D4 D5xC8:C22 SD16:D10 C20.C24 D20.32C23 D20.33C23 D20:21D6 D60:36C22 D20:10D6 D12.9D10 D4.D30
D4.D10 is a maximal quotient of
C20.47(C4:C4) C4oD20:9C4 C4:C4.228D10 C4:C4.230D10 D4.3Dic10 C42.48D10 D4.1D20 C42.51D10 (C2xD4).D10 D20:17D4 C4:D4:D5 C4.(D4xD5) C42.72D10 C20:2D8 C42.74D10 Dic10:9D4 C42.76D10 D20:5Q8 C42.82D10 Dic10:5Q8 (D4xC10):18C4 (C2xC10):8D8 (C5xD4).31D4 D20:21D6 D60:36C22 D20:10D6 D12.9D10 D4.D30
31 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 5A | 5B | 8A | 8B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 2 | 4 | 4 | 20 | 2 | 2 | 20 | 2 | 2 | 20 | 20 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
31 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | D10 | D10 | C5:D4 | C5:D4 | C8:C22 | D4.D10 |
kernel | D4.D10 | C4.Dic5 | D4:D5 | D4.D5 | C4oD20 | D4xC10 | C20 | C2xC10 | C2xD4 | C2xC4 | D4 | C4 | C22 | C5 | C1 |
# reps | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 1 | 4 |
Matrix representation of D4.D10 ►in GL6(F41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 38 | 0 | 0 |
0 | 0 | 28 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 3 |
0 | 0 | 0 | 0 | 13 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 38 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 28 | 1 |
0 | 6 | 0 | 0 | 0 | 0 |
34 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 38 | 0 | 0 |
0 | 0 | 28 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 38 |
0 | 0 | 0 | 0 | 28 | 1 |
9 | 16 | 0 | 0 | 0 | 0 |
36 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 38 |
0 | 0 | 0 | 0 | 28 | 1 |
0 | 0 | 40 | 38 | 0 | 0 |
0 | 0 | 28 | 1 | 0 | 0 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,28,0,0,0,0,38,1,0,0,0,0,0,0,1,13,0,0,0,0,3,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,38,1,0,0,0,0,0,0,40,28,0,0,0,0,0,1],[0,34,0,0,0,0,6,7,0,0,0,0,0,0,40,28,0,0,0,0,38,1,0,0,0,0,0,0,40,28,0,0,0,0,38,1],[9,36,0,0,0,0,16,32,0,0,0,0,0,0,0,0,40,28,0,0,0,0,38,1,0,0,40,28,0,0,0,0,38,1,0,0] >;
D4.D10 in GAP, Magma, Sage, TeX
D_4.D_{10}
% in TeX
G:=Group("D4.D10");
// GroupNames label
G:=SmallGroup(160,153);
// by ID
G=gap.SmallGroup(160,153);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,103,218,188,579,159,69,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=1,c^10=d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^9>;
// generators/relations