direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C3×C23.65C23, C4⋊C4⋊6C12, C12⋊9(C4⋊C4), C2.8(D4×C12), C6.31(C4×Q8), C2.4(Q8×C12), C6.109(C4×D4), C6.36(C4⋊Q8), (C2×C12).73Q8, (C2×C12).359D4, (C2×C42).13C6, C22.38(C6×D4), C22.14(C6×Q8), C6.85(C22⋊Q8), C6.135(C4⋊D4), C2.C42.9C6, C23.66(C22×C6), C6.28(C42.C2), C22.38(C22×C12), (C22×C6).453C23, (C22×C12).575C22, C4⋊2(C3×C4⋊C4), C2.8(C6×C4⋊C4), (C3×C4⋊C4)⋊13C4, C2.2(C3×C4⋊Q8), (C2×C4⋊C4).7C6, C6.63(C2×C4⋊C4), (C2×C4×C12).33C2, (C6×C4⋊C4).36C2, C2.4(C3×C4⋊D4), (C2×C4).11(C3×Q8), (C2×C4).16(C2×C12), C2.4(C3×C22⋊Q8), (C2×C6).605(C2×D4), (C2×C4).117(C3×D4), (C2×C6).106(C2×Q8), (C2×C12).264(C2×C4), C2.3(C3×C42.C2), (C22×C4).96(C2×C6), C22.23(C3×C4○D4), (C2×C6).213(C4○D4), (C2×C6).225(C22×C4), (C3×C2.C42).25C2, SmallGroup(192,822)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C23.65C23
G = < a,b,c,d,e,f,g | a3=b2=c2=d2=1, e2=f2=d, g2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, fg=gf >
Subgroups: 242 in 170 conjugacy classes, 106 normal (46 characteristic)
C1, C2, C3, C4, C4, C22, C6, C2×C4, C2×C4, C23, C12, C12, C2×C6, C42, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×C12, C2×C12, C22×C6, C2.C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4×C12, C3×C4⋊C4, C3×C4⋊C4, C22×C12, C22×C12, C23.65C23, C3×C2.C42, C2×C4×C12, C6×C4⋊C4, C6×C4⋊C4, C3×C23.65C23
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C23, C12, C2×C6, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C12, C3×D4, C3×Q8, C22×C6, C2×C4⋊C4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C42.C2, C4⋊Q8, C3×C4⋊C4, C22×C12, C6×D4, C6×Q8, C3×C4○D4, C23.65C23, C6×C4⋊C4, D4×C12, Q8×C12, C3×C4⋊D4, C3×C22⋊Q8, C3×C42.C2, C3×C4⋊Q8, C3×C23.65C23
(1 111 107)(2 112 108)(3 109 105)(4 110 106)(5 50 46)(6 51 47)(7 52 48)(8 49 45)(9 17 13)(10 18 14)(11 19 15)(12 20 16)(21 29 25)(22 30 26)(23 31 27)(24 32 28)(33 41 37)(34 42 38)(35 43 39)(36 44 40)(53 61 57)(54 62 58)(55 63 59)(56 64 60)(65 73 69)(66 74 70)(67 75 71)(68 76 72)(77 85 81)(78 86 82)(79 87 83)(80 88 84)(89 99 93)(90 100 94)(91 97 95)(92 98 96)(101 141 137)(102 142 138)(103 143 139)(104 144 140)(113 121 117)(114 122 118)(115 123 119)(116 124 120)(125 133 129)(126 134 130)(127 135 131)(128 136 132)(145 153 149)(146 154 150)(147 155 151)(148 156 152)(157 165 161)(158 166 162)(159 167 163)(160 168 164)(169 177 173)(170 178 174)(171 179 175)(172 180 176)(181 189 185)(182 190 186)(183 191 187)(184 192 188)
(1 11)(2 12)(3 9)(4 10)(5 102)(6 103)(7 104)(8 101)(13 105)(14 106)(15 107)(16 108)(17 109)(18 110)(19 111)(20 112)(21 113)(22 114)(23 115)(24 116)(25 117)(26 118)(27 119)(28 120)(29 121)(30 122)(31 123)(32 124)(33 125)(34 126)(35 127)(36 128)(37 129)(38 130)(39 131)(40 132)(41 133)(42 134)(43 135)(44 136)(45 137)(46 138)(47 139)(48 140)(49 141)(50 142)(51 143)(52 144)(53 145)(54 146)(55 147)(56 148)(57 149)(58 150)(59 151)(60 152)(61 153)(62 154)(63 155)(64 156)(65 157)(66 158)(67 159)(68 160)(69 161)(70 162)(71 163)(72 164)(73 165)(74 166)(75 167)(76 168)(77 169)(78 170)(79 171)(80 172)(81 173)(82 174)(83 175)(84 176)(85 177)(86 178)(87 179)(88 180)(89 181)(90 182)(91 183)(92 184)(93 185)(94 186)(95 187)(96 188)(97 191)(98 192)(99 189)(100 190)
(1 147)(2 148)(3 145)(4 146)(5 100)(6 97)(7 98)(8 99)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 61)(18 62)(19 63)(20 64)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 71)(28 72)(29 73)(30 74)(31 75)(32 76)(33 77)(34 78)(35 79)(36 80)(37 81)(38 82)(39 83)(40 84)(41 85)(42 86)(43 87)(44 88)(45 89)(46 90)(47 91)(48 92)(49 93)(50 94)(51 95)(52 96)(101 189)(102 190)(103 191)(104 192)(105 149)(106 150)(107 151)(108 152)(109 153)(110 154)(111 155)(112 156)(113 157)(114 158)(115 159)(116 160)(117 161)(118 162)(119 163)(120 164)(121 165)(122 166)(123 167)(124 168)(125 169)(126 170)(127 171)(128 172)(129 173)(130 174)(131 175)(132 176)(133 177)(134 178)(135 179)(136 180)(137 181)(138 182)(139 183)(140 184)(141 185)(142 186)(143 187)(144 188)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)(65 67)(66 68)(69 71)(70 72)(73 75)(74 76)(77 79)(78 80)(81 83)(82 84)(85 87)(86 88)(89 91)(90 92)(93 95)(94 96)(97 99)(98 100)(101 103)(102 104)(105 107)(106 108)(109 111)(110 112)(113 115)(114 116)(117 119)(118 120)(121 123)(122 124)(125 127)(126 128)(129 131)(130 132)(133 135)(134 136)(137 139)(138 140)(141 143)(142 144)(145 147)(146 148)(149 151)(150 152)(153 155)(154 156)(157 159)(158 160)(161 163)(162 164)(165 167)(166 168)(169 171)(170 172)(173 175)(174 176)(177 179)(178 180)(181 183)(182 184)(185 187)(186 188)(189 191)(190 192)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)(145 146 147 148)(149 150 151 152)(153 154 155 156)(157 158 159 160)(161 162 163 164)(165 166 167 168)(169 170 171 172)(173 174 175 176)(177 178 179 180)(181 182 183 184)(185 186 187 188)(189 190 191 192)
(1 125 3 127)(2 34 4 36)(5 122 7 124)(6 31 8 29)(9 35 11 33)(10 128 12 126)(13 39 15 37)(14 132 16 130)(17 43 19 41)(18 136 20 134)(21 47 23 45)(22 140 24 138)(25 51 27 49)(26 144 28 142)(30 104 32 102)(38 106 40 108)(42 110 44 112)(46 114 48 116)(50 118 52 120)(53 79 55 77)(54 172 56 170)(57 83 59 81)(58 176 60 174)(61 87 63 85)(62 180 64 178)(65 91 67 89)(66 184 68 182)(69 95 71 93)(70 188 72 186)(73 97 75 99)(74 192 76 190)(78 146 80 148)(82 150 84 152)(86 154 88 156)(90 158 92 160)(94 162 96 164)(98 168 100 166)(101 121 103 123)(105 131 107 129)(109 135 111 133)(113 139 115 137)(117 143 119 141)(145 171 147 169)(149 175 151 173)(153 179 155 177)(157 183 159 181)(161 187 163 185)(165 191 167 189)
(1 159 147 115)(2 116 148 160)(3 157 145 113)(4 114 146 158)(5 86 100 42)(6 43 97 87)(7 88 98 44)(8 41 99 85)(9 65 53 21)(10 22 54 66)(11 67 55 23)(12 24 56 68)(13 69 57 25)(14 26 58 70)(15 71 59 27)(16 28 60 72)(17 73 61 29)(18 30 62 74)(19 75 63 31)(20 32 64 76)(33 89 77 45)(34 46 78 90)(35 91 79 47)(36 48 80 92)(37 93 81 49)(38 50 82 94)(39 95 83 51)(40 52 84 96)(101 133 189 177)(102 178 190 134)(103 135 191 179)(104 180 192 136)(105 161 149 117)(106 118 150 162)(107 163 151 119)(108 120 152 164)(109 165 153 121)(110 122 154 166)(111 167 155 123)(112 124 156 168)(125 181 169 137)(126 138 170 182)(127 183 171 139)(128 140 172 184)(129 185 173 141)(130 142 174 186)(131 187 175 143)(132 144 176 188)
G:=sub<Sym(192)| (1,111,107)(2,112,108)(3,109,105)(4,110,106)(5,50,46)(6,51,47)(7,52,48)(8,49,45)(9,17,13)(10,18,14)(11,19,15)(12,20,16)(21,29,25)(22,30,26)(23,31,27)(24,32,28)(33,41,37)(34,42,38)(35,43,39)(36,44,40)(53,61,57)(54,62,58)(55,63,59)(56,64,60)(65,73,69)(66,74,70)(67,75,71)(68,76,72)(77,85,81)(78,86,82)(79,87,83)(80,88,84)(89,99,93)(90,100,94)(91,97,95)(92,98,96)(101,141,137)(102,142,138)(103,143,139)(104,144,140)(113,121,117)(114,122,118)(115,123,119)(116,124,120)(125,133,129)(126,134,130)(127,135,131)(128,136,132)(145,153,149)(146,154,150)(147,155,151)(148,156,152)(157,165,161)(158,166,162)(159,167,163)(160,168,164)(169,177,173)(170,178,174)(171,179,175)(172,180,176)(181,189,185)(182,190,186)(183,191,187)(184,192,188), (1,11)(2,12)(3,9)(4,10)(5,102)(6,103)(7,104)(8,101)(13,105)(14,106)(15,107)(16,108)(17,109)(18,110)(19,111)(20,112)(21,113)(22,114)(23,115)(24,116)(25,117)(26,118)(27,119)(28,120)(29,121)(30,122)(31,123)(32,124)(33,125)(34,126)(35,127)(36,128)(37,129)(38,130)(39,131)(40,132)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,141)(50,142)(51,143)(52,144)(53,145)(54,146)(55,147)(56,148)(57,149)(58,150)(59,151)(60,152)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,161)(70,162)(71,163)(72,164)(73,165)(74,166)(75,167)(76,168)(77,169)(78,170)(79,171)(80,172)(81,173)(82,174)(83,175)(84,176)(85,177)(86,178)(87,179)(88,180)(89,181)(90,182)(91,183)(92,184)(93,185)(94,186)(95,187)(96,188)(97,191)(98,192)(99,189)(100,190), (1,147)(2,148)(3,145)(4,146)(5,100)(6,97)(7,98)(8,99)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88)(45,89)(46,90)(47,91)(48,92)(49,93)(50,94)(51,95)(52,96)(101,189)(102,190)(103,191)(104,192)(105,149)(106,150)(107,151)(108,152)(109,153)(110,154)(111,155)(112,156)(113,157)(114,158)(115,159)(116,160)(117,161)(118,162)(119,163)(120,164)(121,165)(122,166)(123,167)(124,168)(125,169)(126,170)(127,171)(128,172)(129,173)(130,174)(131,175)(132,176)(133,177)(134,178)(135,179)(136,180)(137,181)(138,182)(139,183)(140,184)(141,185)(142,186)(143,187)(144,188), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192), (1,125,3,127)(2,34,4,36)(5,122,7,124)(6,31,8,29)(9,35,11,33)(10,128,12,126)(13,39,15,37)(14,132,16,130)(17,43,19,41)(18,136,20,134)(21,47,23,45)(22,140,24,138)(25,51,27,49)(26,144,28,142)(30,104,32,102)(38,106,40,108)(42,110,44,112)(46,114,48,116)(50,118,52,120)(53,79,55,77)(54,172,56,170)(57,83,59,81)(58,176,60,174)(61,87,63,85)(62,180,64,178)(65,91,67,89)(66,184,68,182)(69,95,71,93)(70,188,72,186)(73,97,75,99)(74,192,76,190)(78,146,80,148)(82,150,84,152)(86,154,88,156)(90,158,92,160)(94,162,96,164)(98,168,100,166)(101,121,103,123)(105,131,107,129)(109,135,111,133)(113,139,115,137)(117,143,119,141)(145,171,147,169)(149,175,151,173)(153,179,155,177)(157,183,159,181)(161,187,163,185)(165,191,167,189), (1,159,147,115)(2,116,148,160)(3,157,145,113)(4,114,146,158)(5,86,100,42)(6,43,97,87)(7,88,98,44)(8,41,99,85)(9,65,53,21)(10,22,54,66)(11,67,55,23)(12,24,56,68)(13,69,57,25)(14,26,58,70)(15,71,59,27)(16,28,60,72)(17,73,61,29)(18,30,62,74)(19,75,63,31)(20,32,64,76)(33,89,77,45)(34,46,78,90)(35,91,79,47)(36,48,80,92)(37,93,81,49)(38,50,82,94)(39,95,83,51)(40,52,84,96)(101,133,189,177)(102,178,190,134)(103,135,191,179)(104,180,192,136)(105,161,149,117)(106,118,150,162)(107,163,151,119)(108,120,152,164)(109,165,153,121)(110,122,154,166)(111,167,155,123)(112,124,156,168)(125,181,169,137)(126,138,170,182)(127,183,171,139)(128,140,172,184)(129,185,173,141)(130,142,174,186)(131,187,175,143)(132,144,176,188)>;
G:=Group( (1,111,107)(2,112,108)(3,109,105)(4,110,106)(5,50,46)(6,51,47)(7,52,48)(8,49,45)(9,17,13)(10,18,14)(11,19,15)(12,20,16)(21,29,25)(22,30,26)(23,31,27)(24,32,28)(33,41,37)(34,42,38)(35,43,39)(36,44,40)(53,61,57)(54,62,58)(55,63,59)(56,64,60)(65,73,69)(66,74,70)(67,75,71)(68,76,72)(77,85,81)(78,86,82)(79,87,83)(80,88,84)(89,99,93)(90,100,94)(91,97,95)(92,98,96)(101,141,137)(102,142,138)(103,143,139)(104,144,140)(113,121,117)(114,122,118)(115,123,119)(116,124,120)(125,133,129)(126,134,130)(127,135,131)(128,136,132)(145,153,149)(146,154,150)(147,155,151)(148,156,152)(157,165,161)(158,166,162)(159,167,163)(160,168,164)(169,177,173)(170,178,174)(171,179,175)(172,180,176)(181,189,185)(182,190,186)(183,191,187)(184,192,188), (1,11)(2,12)(3,9)(4,10)(5,102)(6,103)(7,104)(8,101)(13,105)(14,106)(15,107)(16,108)(17,109)(18,110)(19,111)(20,112)(21,113)(22,114)(23,115)(24,116)(25,117)(26,118)(27,119)(28,120)(29,121)(30,122)(31,123)(32,124)(33,125)(34,126)(35,127)(36,128)(37,129)(38,130)(39,131)(40,132)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,141)(50,142)(51,143)(52,144)(53,145)(54,146)(55,147)(56,148)(57,149)(58,150)(59,151)(60,152)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,161)(70,162)(71,163)(72,164)(73,165)(74,166)(75,167)(76,168)(77,169)(78,170)(79,171)(80,172)(81,173)(82,174)(83,175)(84,176)(85,177)(86,178)(87,179)(88,180)(89,181)(90,182)(91,183)(92,184)(93,185)(94,186)(95,187)(96,188)(97,191)(98,192)(99,189)(100,190), (1,147)(2,148)(3,145)(4,146)(5,100)(6,97)(7,98)(8,99)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88)(45,89)(46,90)(47,91)(48,92)(49,93)(50,94)(51,95)(52,96)(101,189)(102,190)(103,191)(104,192)(105,149)(106,150)(107,151)(108,152)(109,153)(110,154)(111,155)(112,156)(113,157)(114,158)(115,159)(116,160)(117,161)(118,162)(119,163)(120,164)(121,165)(122,166)(123,167)(124,168)(125,169)(126,170)(127,171)(128,172)(129,173)(130,174)(131,175)(132,176)(133,177)(134,178)(135,179)(136,180)(137,181)(138,182)(139,183)(140,184)(141,185)(142,186)(143,187)(144,188), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192), (1,125,3,127)(2,34,4,36)(5,122,7,124)(6,31,8,29)(9,35,11,33)(10,128,12,126)(13,39,15,37)(14,132,16,130)(17,43,19,41)(18,136,20,134)(21,47,23,45)(22,140,24,138)(25,51,27,49)(26,144,28,142)(30,104,32,102)(38,106,40,108)(42,110,44,112)(46,114,48,116)(50,118,52,120)(53,79,55,77)(54,172,56,170)(57,83,59,81)(58,176,60,174)(61,87,63,85)(62,180,64,178)(65,91,67,89)(66,184,68,182)(69,95,71,93)(70,188,72,186)(73,97,75,99)(74,192,76,190)(78,146,80,148)(82,150,84,152)(86,154,88,156)(90,158,92,160)(94,162,96,164)(98,168,100,166)(101,121,103,123)(105,131,107,129)(109,135,111,133)(113,139,115,137)(117,143,119,141)(145,171,147,169)(149,175,151,173)(153,179,155,177)(157,183,159,181)(161,187,163,185)(165,191,167,189), (1,159,147,115)(2,116,148,160)(3,157,145,113)(4,114,146,158)(5,86,100,42)(6,43,97,87)(7,88,98,44)(8,41,99,85)(9,65,53,21)(10,22,54,66)(11,67,55,23)(12,24,56,68)(13,69,57,25)(14,26,58,70)(15,71,59,27)(16,28,60,72)(17,73,61,29)(18,30,62,74)(19,75,63,31)(20,32,64,76)(33,89,77,45)(34,46,78,90)(35,91,79,47)(36,48,80,92)(37,93,81,49)(38,50,82,94)(39,95,83,51)(40,52,84,96)(101,133,189,177)(102,178,190,134)(103,135,191,179)(104,180,192,136)(105,161,149,117)(106,118,150,162)(107,163,151,119)(108,120,152,164)(109,165,153,121)(110,122,154,166)(111,167,155,123)(112,124,156,168)(125,181,169,137)(126,138,170,182)(127,183,171,139)(128,140,172,184)(129,185,173,141)(130,142,174,186)(131,187,175,143)(132,144,176,188) );
G=PermutationGroup([[(1,111,107),(2,112,108),(3,109,105),(4,110,106),(5,50,46),(6,51,47),(7,52,48),(8,49,45),(9,17,13),(10,18,14),(11,19,15),(12,20,16),(21,29,25),(22,30,26),(23,31,27),(24,32,28),(33,41,37),(34,42,38),(35,43,39),(36,44,40),(53,61,57),(54,62,58),(55,63,59),(56,64,60),(65,73,69),(66,74,70),(67,75,71),(68,76,72),(77,85,81),(78,86,82),(79,87,83),(80,88,84),(89,99,93),(90,100,94),(91,97,95),(92,98,96),(101,141,137),(102,142,138),(103,143,139),(104,144,140),(113,121,117),(114,122,118),(115,123,119),(116,124,120),(125,133,129),(126,134,130),(127,135,131),(128,136,132),(145,153,149),(146,154,150),(147,155,151),(148,156,152),(157,165,161),(158,166,162),(159,167,163),(160,168,164),(169,177,173),(170,178,174),(171,179,175),(172,180,176),(181,189,185),(182,190,186),(183,191,187),(184,192,188)], [(1,11),(2,12),(3,9),(4,10),(5,102),(6,103),(7,104),(8,101),(13,105),(14,106),(15,107),(16,108),(17,109),(18,110),(19,111),(20,112),(21,113),(22,114),(23,115),(24,116),(25,117),(26,118),(27,119),(28,120),(29,121),(30,122),(31,123),(32,124),(33,125),(34,126),(35,127),(36,128),(37,129),(38,130),(39,131),(40,132),(41,133),(42,134),(43,135),(44,136),(45,137),(46,138),(47,139),(48,140),(49,141),(50,142),(51,143),(52,144),(53,145),(54,146),(55,147),(56,148),(57,149),(58,150),(59,151),(60,152),(61,153),(62,154),(63,155),(64,156),(65,157),(66,158),(67,159),(68,160),(69,161),(70,162),(71,163),(72,164),(73,165),(74,166),(75,167),(76,168),(77,169),(78,170),(79,171),(80,172),(81,173),(82,174),(83,175),(84,176),(85,177),(86,178),(87,179),(88,180),(89,181),(90,182),(91,183),(92,184),(93,185),(94,186),(95,187),(96,188),(97,191),(98,192),(99,189),(100,190)], [(1,147),(2,148),(3,145),(4,146),(5,100),(6,97),(7,98),(8,99),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,61),(18,62),(19,63),(20,64),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,71),(28,72),(29,73),(30,74),(31,75),(32,76),(33,77),(34,78),(35,79),(36,80),(37,81),(38,82),(39,83),(40,84),(41,85),(42,86),(43,87),(44,88),(45,89),(46,90),(47,91),(48,92),(49,93),(50,94),(51,95),(52,96),(101,189),(102,190),(103,191),(104,192),(105,149),(106,150),(107,151),(108,152),(109,153),(110,154),(111,155),(112,156),(113,157),(114,158),(115,159),(116,160),(117,161),(118,162),(119,163),(120,164),(121,165),(122,166),(123,167),(124,168),(125,169),(126,170),(127,171),(128,172),(129,173),(130,174),(131,175),(132,176),(133,177),(134,178),(135,179),(136,180),(137,181),(138,182),(139,183),(140,184),(141,185),(142,186),(143,187),(144,188)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64),(65,67),(66,68),(69,71),(70,72),(73,75),(74,76),(77,79),(78,80),(81,83),(82,84),(85,87),(86,88),(89,91),(90,92),(93,95),(94,96),(97,99),(98,100),(101,103),(102,104),(105,107),(106,108),(109,111),(110,112),(113,115),(114,116),(117,119),(118,120),(121,123),(122,124),(125,127),(126,128),(129,131),(130,132),(133,135),(134,136),(137,139),(138,140),(141,143),(142,144),(145,147),(146,148),(149,151),(150,152),(153,155),(154,156),(157,159),(158,160),(161,163),(162,164),(165,167),(166,168),(169,171),(170,172),(173,175),(174,176),(177,179),(178,180),(181,183),(182,184),(185,187),(186,188),(189,191),(190,192)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144),(145,146,147,148),(149,150,151,152),(153,154,155,156),(157,158,159,160),(161,162,163,164),(165,166,167,168),(169,170,171,172),(173,174,175,176),(177,178,179,180),(181,182,183,184),(185,186,187,188),(189,190,191,192)], [(1,125,3,127),(2,34,4,36),(5,122,7,124),(6,31,8,29),(9,35,11,33),(10,128,12,126),(13,39,15,37),(14,132,16,130),(17,43,19,41),(18,136,20,134),(21,47,23,45),(22,140,24,138),(25,51,27,49),(26,144,28,142),(30,104,32,102),(38,106,40,108),(42,110,44,112),(46,114,48,116),(50,118,52,120),(53,79,55,77),(54,172,56,170),(57,83,59,81),(58,176,60,174),(61,87,63,85),(62,180,64,178),(65,91,67,89),(66,184,68,182),(69,95,71,93),(70,188,72,186),(73,97,75,99),(74,192,76,190),(78,146,80,148),(82,150,84,152),(86,154,88,156),(90,158,92,160),(94,162,96,164),(98,168,100,166),(101,121,103,123),(105,131,107,129),(109,135,111,133),(113,139,115,137),(117,143,119,141),(145,171,147,169),(149,175,151,173),(153,179,155,177),(157,183,159,181),(161,187,163,185),(165,191,167,189)], [(1,159,147,115),(2,116,148,160),(3,157,145,113),(4,114,146,158),(5,86,100,42),(6,43,97,87),(7,88,98,44),(8,41,99,85),(9,65,53,21),(10,22,54,66),(11,67,55,23),(12,24,56,68),(13,69,57,25),(14,26,58,70),(15,71,59,27),(16,28,60,72),(17,73,61,29),(18,30,62,74),(19,75,63,31),(20,32,64,76),(33,89,77,45),(34,46,78,90),(35,91,79,47),(36,48,80,92),(37,93,81,49),(38,50,82,94),(39,95,83,51),(40,52,84,96),(101,133,189,177),(102,178,190,134),(103,135,191,179),(104,180,192,136),(105,161,149,117),(106,118,150,162),(107,163,151,119),(108,120,152,164),(109,165,153,121),(110,122,154,166),(111,167,155,123),(112,124,156,168),(125,181,169,137),(126,138,170,182),(127,183,171,139),(128,140,172,184),(129,185,173,141),(130,142,174,186),(131,187,175,143),(132,144,176,188)]])
84 conjugacy classes
| class | 1 | 2A | ··· | 2G | 3A | 3B | 4A | ··· | 4L | 4M | ··· | 4T | 6A | ··· | 6N | 12A | ··· | 12X | 12Y | ··· | 12AN |
| order | 1 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 | 12 | ··· | 12 |
| size | 1 | 1 | ··· | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
84 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | - | ||||||||||
| image | C1 | C2 | C2 | C2 | C3 | C4 | C6 | C6 | C6 | C12 | D4 | Q8 | C4○D4 | C3×D4 | C3×Q8 | C3×C4○D4 |
| kernel | C3×C23.65C23 | C3×C2.C42 | C2×C4×C12 | C6×C4⋊C4 | C23.65C23 | C3×C4⋊C4 | C2.C42 | C2×C42 | C2×C4⋊C4 | C4⋊C4 | C2×C12 | C2×C12 | C2×C6 | C2×C4 | C2×C4 | C22 |
| # reps | 1 | 2 | 1 | 4 | 2 | 8 | 4 | 2 | 8 | 16 | 4 | 4 | 4 | 8 | 8 | 8 |
Matrix representation of C3×C23.65C23 ►in GL5(𝔽13)
| 1 | 0 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 | 0 |
| 0 | 0 | 9 | 0 | 0 |
| 0 | 0 | 0 | 3 | 0 |
| 0 | 0 | 0 | 0 | 3 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 12 | 0 | 0 | 0 |
| 0 | 0 | 12 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 12 | 0 |
| 0 | 0 | 0 | 0 | 12 |
| 12 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 5 | 0 | 0 | 0 | 0 |
| 0 | 0 | 8 | 0 | 0 |
| 0 | 5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 5 | 9 |
| 0 | 0 | 0 | 6 | 8 |
| 5 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 12 | 0 |
| 0 | 0 | 0 | 0 | 12 |
| 12 | 0 | 0 | 0 | 0 |
| 0 | 12 | 0 | 0 | 0 |
| 0 | 0 | 12 | 0 | 0 |
| 0 | 0 | 0 | 12 | 11 |
| 0 | 0 | 0 | 1 | 1 |
G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,3,0,0,0,0,0,3],[1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[5,0,0,0,0,0,0,5,0,0,0,8,0,0,0,0,0,0,5,6,0,0,0,9,8],[5,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,1,0,0,0,11,1] >;
C3×C23.65C23 in GAP, Magma, Sage, TeX
C_3\times C_2^3._{65}C_2^3 % in TeX
G:=Group("C3xC2^3.65C2^3"); // GroupNames label
G:=SmallGroup(192,822);
// by ID
G=gap.SmallGroup(192,822);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,672,365,680,1094,268]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=1,e^2=f^2=d,g^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*g=g*f>;
// generators/relations