extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6)⋊1SD16 = D12.31D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6):1SD16 | 192,290 |
(C2×C6)⋊2SD16 = Dic6⋊14D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6):2SD16 | 192,297 |
(C2×C6)⋊3SD16 = Dic6⋊17D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6):3SD16 | 192,599 |
(C2×C6)⋊4SD16 = C3⋊C8⋊23D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6):4SD16 | 192,600 |
(C2×C6)⋊5SD16 = D12.36D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6):5SD16 | 192,605 |
(C2×C6)⋊6SD16 = C3⋊C8⋊24D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6):6SD16 | 192,607 |
(C2×C6)⋊7SD16 = C3×C8⋊8D4 | φ: SD16/C8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6):7SD16 | 192,898 |
(C2×C6)⋊8SD16 = C24⋊30D4 | φ: SD16/C8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6):8SD16 | 192,673 |
(C2×C6)⋊9SD16 = C22×C24⋊C2 | φ: SD16/C8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6):9SD16 | 192,1298 |
(C2×C6)⋊10SD16 = C3×C22⋊SD16 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):10SD16 | 192,883 |
(C2×C6)⋊11SD16 = (C3×D4).31D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):11SD16 | 192,777 |
(C2×C6)⋊12SD16 = C22×D4.S3 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6):12SD16 | 192,1353 |
(C2×C6)⋊13SD16 = C3×Q8⋊D4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6):13SD16 | 192,881 |
(C2×C6)⋊14SD16 = (C3×Q8)⋊13D4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6):14SD16 | 192,786 |
(C2×C6)⋊15SD16 = C22×Q8⋊2S3 | φ: SD16/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6):15SD16 | 192,1366 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1SD16 = C23.35D12 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).1SD16 | 192,26 |
(C2×C6).2SD16 = C22.2D24 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).2SD16 | 192,29 |
(C2×C6).3SD16 = C24.6Q8 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).3SD16 | 192,53 |
(C2×C6).4SD16 = D24.C4 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 48 | 4+ | (C2xC6).4SD16 | 192,54 |
(C2×C6).5SD16 = C24.8D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 96 | 4- | (C2xC6).5SD16 | 192,55 |
(C2×C6).6SD16 = Dic12.C4 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 96 | 4 | (C2xC6).6SD16 | 192,56 |
(C2×C6).7SD16 = C24.Q8 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).7SD16 | 192,72 |
(C2×C6).8SD16 = M5(2)⋊S3 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 48 | 4+ | (C2xC6).8SD16 | 192,75 |
(C2×C6).9SD16 = C12.4D8 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 96 | 4- | (C2xC6).9SD16 | 192,76 |
(C2×C6).10SD16 = (C6×D4)⋊C4 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).10SD16 | 192,96 |
(C2×C6).11SD16 = (C6×Q8)⋊C4 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).11SD16 | 192,97 |
(C2×C6).12SD16 = C24.41D4 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 96 | 4 | (C2xC6).12SD16 | 192,126 |
(C2×C6).13SD16 = C23.39D12 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).13SD16 | 192,280 |
(C2×C6).14SD16 = C23.43D12 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).14SD16 | 192,294 |
(C2×C6).15SD16 = C4⋊D4.S3 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).15SD16 | 192,593 |
(C2×C6).16SD16 = (C2×Q8).49D6 | φ: SD16/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).16SD16 | 192,602 |
(C2×C6).17SD16 = C3×D8.C4 | φ: SD16/C8 → C2 ⊆ Aut C2×C6 | 96 | 2 | (C2xC6).17SD16 | 192,165 |
(C2×C6).18SD16 = D24.1C4 | φ: SD16/C8 → C2 ⊆ Aut C2×C6 | 96 | 2 | (C2xC6).18SD16 | 192,69 |
(C2×C6).19SD16 = C12.9C42 | φ: SD16/C8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).19SD16 | 192,110 |
(C2×C6).20SD16 = C2×C2.Dic12 | φ: SD16/C8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).20SD16 | 192,662 |
(C2×C6).21SD16 = C2×C8⋊Dic3 | φ: SD16/C8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).21SD16 | 192,663 |
(C2×C6).22SD16 = C2×C2.D24 | φ: SD16/C8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).22SD16 | 192,671 |
(C2×C6).23SD16 = C3×C23.31D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).23SD16 | 192,134 |
(C2×C6).24SD16 = C3×M5(2)⋊C2 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).24SD16 | 192,167 |
(C2×C6).25SD16 = C3×C8.17D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 96 | 4 | (C2xC6).25SD16 | 192,168 |
(C2×C6).26SD16 = C3×C8.Q8 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).26SD16 | 192,171 |
(C2×C6).27SD16 = C3×C23.47D4 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).27SD16 | 192,916 |
(C2×C6).28SD16 = C4⋊Dic3⋊C4 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).28SD16 | 192,11 |
(C2×C6).29SD16 = C8.Dic6 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).29SD16 | 192,46 |
(C2×C6).30SD16 = D8.Dic3 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).30SD16 | 192,122 |
(C2×C6).31SD16 = Q16.Dic3 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 96 | 4 | (C2xC6).31SD16 | 192,124 |
(C2×C6).32SD16 = C2×C6.SD16 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).32SD16 | 192,528 |
(C2×C6).33SD16 = C4⋊C4.231D6 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).33SD16 | 192,530 |
(C2×C6).34SD16 = C2×D4⋊Dic3 | φ: SD16/D4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).34SD16 | 192,773 |
(C2×C6).35SD16 = C3×C22.SD16 | φ: SD16/Q8 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).35SD16 | 192,133 |
(C2×C6).36SD16 = C3×C23.46D4 | φ: SD16/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).36SD16 | 192,914 |
(C2×C6).37SD16 = C6.C4≀C2 | φ: SD16/Q8 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).37SD16 | 192,10 |
(C2×C6).38SD16 = C12.C42 | φ: SD16/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).38SD16 | 192,88 |
(C2×C6).39SD16 = C2×C12.Q8 | φ: SD16/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).39SD16 | 192,522 |
(C2×C6).40SD16 = C2×C6.D8 | φ: SD16/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).40SD16 | 192,524 |
(C2×C6).41SD16 = C4⋊C4.228D6 | φ: SD16/Q8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).41SD16 | 192,527 |
(C2×C6).42SD16 = C2×Q8⋊2Dic3 | φ: SD16/Q8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).42SD16 | 192,783 |
(C2×C6).43SD16 = C3×C22.4Q16 | central extension (φ=1) | 192 | | (C2xC6).43SD16 | 192,146 |
(C2×C6).44SD16 = C6×D4⋊C4 | central extension (φ=1) | 96 | | (C2xC6).44SD16 | 192,847 |
(C2×C6).45SD16 = C6×Q8⋊C4 | central extension (φ=1) | 192 | | (C2xC6).45SD16 | 192,848 |
(C2×C6).46SD16 = C6×C4.Q8 | central extension (φ=1) | 192 | | (C2xC6).46SD16 | 192,858 |