Extensions 1→N→G→Q→1 with N=C4 and Q=D42S3

Direct product G=N×Q with N=C4 and Q=D42S3
dρLabelID
C4×D42S396C4xD4:2S3192,1095

Semidirect products G=N:Q with N=C4 and Q=D42S3
extensionφ:Q→Aut NdρLabelID
C41(D42S3) = Dic611D4φ: D42S3/Dic6C2 ⊆ Aut C496C4:1(D4:2S3)192,1277
C42(D42S3) = C42.238D6φ: D42S3/C4×S3C2 ⊆ Aut C496C4:2(D4:2S3)192,1275
C43(D42S3) = C12⋊(C4○D4)φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4:3(D4:2S3)192,1155
C44(D42S3) = C6.732- 1+4φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4:4(D4:2S3)192,1170
C45(D42S3) = D46D12φ: D42S3/C3×D4C2 ⊆ Aut C496C4:5(D4:2S3)192,1114

Non-split extensions G=N.Q with N=C4 and Q=D42S3
extensionφ:Q→Aut NdρLabelID
C4.1(D42S3) = C42.61D6φ: D42S3/Dic6C2 ⊆ Aut C496C4.1(D4:2S3)192,613
C4.2(D42S3) = D12.23D4φ: D42S3/Dic6C2 ⊆ Aut C496C4.2(D4:2S3)192,616
C4.3(D42S3) = C122D8φ: D42S3/Dic6C2 ⊆ Aut C496C4.3(D4:2S3)192,631
C4.4(D42S3) = Dic69D4φ: D42S3/Dic6C2 ⊆ Aut C496C4.4(D4:2S3)192,634
C4.5(D42S3) = C125SD16φ: D42S3/Dic6C2 ⊆ Aut C496C4.5(D4:2S3)192,642
C4.6(D42S3) = C12⋊Q16φ: D42S3/Dic6C2 ⊆ Aut C4192C4.6(D4:2S3)192,649
C4.7(D42S3) = Dic3⋊D8φ: D42S3/Dic6C2 ⊆ Aut C496C4.7(D4:2S3)192,709
C4.8(D42S3) = (C6×D8).C2φ: D42S3/Dic6C2 ⊆ Aut C496C4.8(D4:2S3)192,712
C4.9(D42S3) = Dic33SD16φ: D42S3/Dic6C2 ⊆ Aut C496C4.9(D4:2S3)192,721
C4.10(D42S3) = Dic35SD16φ: D42S3/Dic6C2 ⊆ Aut C496C4.10(D4:2S3)192,722
C4.11(D42S3) = (C3×D4).D4φ: D42S3/Dic6C2 ⊆ Aut C496C4.11(D4:2S3)192,724
C4.12(D42S3) = (C3×Q8).D4φ: D42S3/Dic6C2 ⊆ Aut C496C4.12(D4:2S3)192,725
C4.13(D42S3) = Dic33Q16φ: D42S3/Dic6C2 ⊆ Aut C4192C4.13(D4:2S3)192,741
C4.14(D42S3) = (C2×Q16)⋊S3φ: D42S3/Dic6C2 ⊆ Aut C496C4.14(D4:2S3)192,744
C4.15(D42S3) = C42.139D6φ: D42S3/Dic6C2 ⊆ Aut C496C4.15(D4:2S3)192,1230
C4.16(D42S3) = C42.143D6φ: D42S3/Dic6C2 ⊆ Aut C496C4.16(D4:2S3)192,1240
C4.17(D42S3) = C42.166D6φ: D42S3/Dic6C2 ⊆ Aut C496C4.17(D4:2S3)192,1272
C4.18(D42S3) = Dic68Q8φ: D42S3/Dic6C2 ⊆ Aut C4192C4.18(D4:2S3)192,1280
C4.19(D42S3) = C42.177D6φ: D42S3/Dic6C2 ⊆ Aut C496C4.19(D4:2S3)192,1291
C4.20(D42S3) = C42.62D6φ: D42S3/C4×S3C2 ⊆ Aut C496C4.20(D4:2S3)192,614
C4.21(D42S3) = C42.213D6φ: D42S3/C4×S3C2 ⊆ Aut C496C4.21(D4:2S3)192,615
C4.22(D42S3) = C12.16D8φ: D42S3/C4×S3C2 ⊆ Aut C496C4.22(D4:2S3)192,629
C4.23(D42S3) = C42.72D6φ: D42S3/C4×S3C2 ⊆ Aut C496C4.23(D4:2S3)192,630
C4.24(D42S3) = C12.9Q16φ: D42S3/C4×S3C2 ⊆ Aut C4192C4.24(D4:2S3)192,638
C4.25(D42S3) = C42.77D6φ: D42S3/C4×S3C2 ⊆ Aut C4192C4.25(D4:2S3)192,641
C4.26(D42S3) = Dic3×D8φ: D42S3/C4×S3C2 ⊆ Aut C496C4.26(D4:2S3)192,708
C4.27(D42S3) = D8⋊Dic3φ: D42S3/C4×S3C2 ⊆ Aut C496C4.27(D4:2S3)192,711
C4.28(D42S3) = D63D8φ: D42S3/C4×S3C2 ⊆ Aut C496C4.28(D4:2S3)192,716
C4.29(D42S3) = C2412D4φ: D42S3/C4×S3C2 ⊆ Aut C496C4.29(D4:2S3)192,718
C4.30(D42S3) = Dic3×SD16φ: D42S3/C4×S3C2 ⊆ Aut C496C4.30(D4:2S3)192,720
C4.31(D42S3) = SD16⋊Dic3φ: D42S3/C4×S3C2 ⊆ Aut C496C4.31(D4:2S3)192,723
C4.32(D42S3) = C2414D4φ: D42S3/C4×S3C2 ⊆ Aut C496C4.32(D4:2S3)192,730
C4.33(D42S3) = C248D4φ: D42S3/C4×S3C2 ⊆ Aut C496C4.33(D4:2S3)192,733
C4.34(D42S3) = Dic3×Q16φ: D42S3/C4×S3C2 ⊆ Aut C4192C4.34(D4:2S3)192,740
C4.35(D42S3) = Q16⋊Dic3φ: D42S3/C4×S3C2 ⊆ Aut C4192C4.35(D4:2S3)192,743
C4.36(D42S3) = D63Q16φ: D42S3/C4×S3C2 ⊆ Aut C496C4.36(D4:2S3)192,747
C4.37(D42S3) = C24.36D4φ: D42S3/C4×S3C2 ⊆ Aut C496C4.37(D4:2S3)192,748
C4.38(D42S3) = C42.234D6φ: D42S3/C4×S3C2 ⊆ Aut C496C4.38(D4:2S3)192,1239
C4.39(D42S3) = C42.144D6φ: D42S3/C4×S3C2 ⊆ Aut C496C4.39(D4:2S3)192,1241
C4.40(D42S3) = C42.168D6φ: D42S3/C4×S3C2 ⊆ Aut C496C4.40(D4:2S3)192,1278
C4.41(D42S3) = C42.241D6φ: D42S3/C4×S3C2 ⊆ Aut C496C4.41(D4:2S3)192,1287
C4.42(D42S3) = C42.176D6φ: D42S3/C4×S3C2 ⊆ Aut C496C4.42(D4:2S3)192,1290
C4.43(D42S3) = Dic34D8φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.43(D4:2S3)192,315
C4.44(D42S3) = D4.S3⋊C4φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.44(D4:2S3)192,316
C4.45(D42S3) = Dic36SD16φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.45(D4:2S3)192,317
C4.46(D42S3) = Dic3.SD16φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.46(D4:2S3)192,319
C4.47(D42S3) = C4⋊C4.D6φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.47(D4:2S3)192,323
C4.48(D42S3) = C12⋊Q8⋊C2φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.48(D4:2S3)192,324
C4.49(D42S3) = (C2×C8).200D6φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.49(D4:2S3)192,327
C4.50(D42S3) = D4⋊S3⋊C4φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.50(D4:2S3)192,344
C4.51(D42S3) = Dic37SD16φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.51(D4:2S3)192,347
C4.52(D42S3) = C3⋊Q16⋊C4φ: D42S3/C2×Dic3C2 ⊆ Aut C4192C4.52(D4:2S3)192,348
C4.53(D42S3) = Dic34Q16φ: D42S3/C2×Dic3C2 ⊆ Aut C4192C4.53(D4:2S3)192,349
C4.54(D42S3) = Dic3.1Q16φ: D42S3/C2×Dic3C2 ⊆ Aut C4192C4.54(D4:2S3)192,351
C4.55(D42S3) = (C2×C8).D6φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.55(D4:2S3)192,353
C4.56(D42S3) = (C2×Q8).36D6φ: D42S3/C2×Dic3C2 ⊆ Aut C4192C4.56(D4:2S3)192,356
C4.57(D42S3) = Q8⋊C4⋊S3φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.57(D4:2S3)192,359
C4.58(D42S3) = Q83(C4×S3)φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.58(D4:2S3)192,376
C4.59(D42S3) = C3⋊C822D4φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.59(D4:2S3)192,597
C4.60(D42S3) = C4⋊D4⋊S3φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.60(D4:2S3)192,598
C4.61(D42S3) = C3⋊C823D4φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.61(D4:2S3)192,600
C4.62(D42S3) = C3⋊C85D4φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.62(D4:2S3)192,601
C4.63(D42S3) = C3⋊C824D4φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.63(D4:2S3)192,607
C4.64(D42S3) = C3⋊C86D4φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.64(D4:2S3)192,608
C4.65(D42S3) = C3⋊C8.29D4φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.65(D4:2S3)192,610
C4.66(D42S3) = C3⋊C8.6D4φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.66(D4:2S3)192,611
C4.67(D42S3) = C4⋊C4.178D6φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.67(D4:2S3)192,1159
C4.68(D42S3) = C6.712- 1+4φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.68(D4:2S3)192,1162
C4.69(D42S3) = C6.472+ 1+4φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.69(D4:2S3)192,1178
C4.70(D42S3) = (Q8×Dic3)⋊C2φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.70(D4:2S3)192,1181
C4.71(D42S3) = C4⋊C4.187D6φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.71(D4:2S3)192,1183
C4.72(D42S3) = C6.152- 1+4φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.72(D4:2S3)192,1184
C4.73(D42S3) = C6.242- 1+4φ: D42S3/C2×Dic3C2 ⊆ Aut C496C4.73(D4:2S3)192,1202
C4.74(D42S3) = Dic3.D8φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.74(D4:2S3)192,318
C4.75(D42S3) = D4⋊Dic6φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.75(D4:2S3)192,320
C4.76(D42S3) = D4.Dic6φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.76(D4:2S3)192,322
C4.77(D42S3) = D4.2Dic6φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.77(D4:2S3)192,325
C4.78(D42S3) = D6.D8φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.78(D4:2S3)192,333
C4.79(D42S3) = D6.SD16φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.79(D4:2S3)192,336
C4.80(D42S3) = D6⋊C811C2φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.80(D4:2S3)192,338
C4.81(D42S3) = C241C4⋊C2φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.81(D4:2S3)192,343
C4.82(D42S3) = Q82Dic6φ: D42S3/C3⋊D4C2 ⊆ Aut C4192C4.82(D4:2S3)192,350
C4.83(D42S3) = Q83Dic6φ: D42S3/C3⋊D4C2 ⊆ Aut C4192C4.83(D4:2S3)192,352
C4.84(D42S3) = Q8.3Dic6φ: D42S3/C3⋊D4C2 ⊆ Aut C4192C4.84(D4:2S3)192,355
C4.85(D42S3) = Q8.4Dic6φ: D42S3/C3⋊D4C2 ⊆ Aut C4192C4.85(D4:2S3)192,358
C4.86(D42S3) = D6.1SD16φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.86(D4:2S3)192,364
C4.87(D42S3) = D6.Q16φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.87(D4:2S3)192,370
C4.88(D42S3) = D6⋊C8.C2φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.88(D4:2S3)192,373
C4.89(D42S3) = C8⋊Dic3⋊C2φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.89(D4:2S3)192,374
C4.90(D42S3) = (C2×C6).D8φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.90(D4:2S3)192,592
C4.91(D42S3) = C4⋊D4.S3φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.91(D4:2S3)192,593
C4.92(D42S3) = C6.Q16⋊C2φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.92(D4:2S3)192,594
C4.93(D42S3) = (C2×Q8).49D6φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.93(D4:2S3)192,602
C4.94(D42S3) = (C2×C6).Q16φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.94(D4:2S3)192,603
C4.95(D42S3) = (C2×Q8).51D6φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.95(D4:2S3)192,604
C4.96(D42S3) = C6.432+ 1+4φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.96(D4:2S3)192,1173
C4.97(D42S3) = C6.452+ 1+4φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.97(D4:2S3)192,1175
C4.98(D42S3) = C6.1152+ 1+4φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.98(D4:2S3)192,1177
C4.99(D42S3) = C6.1182+ 1+4φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.99(D4:2S3)192,1194
C4.100(D42S3) = C6.212- 1+4φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.100(D4:2S3)192,1198
C4.101(D42S3) = C6.232- 1+4φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.101(D4:2S3)192,1200
C4.102(D42S3) = C6.772- 1+4φ: D42S3/C3⋊D4C2 ⊆ Aut C496C4.102(D4:2S3)192,1201
C4.103(D42S3) = C23.39D12φ: D42S3/C3×D4C2 ⊆ Aut C496C4.103(D4:2S3)192,280
C4.104(D42S3) = C23.40D12φ: D42S3/C3×D4C2 ⊆ Aut C496C4.104(D4:2S3)192,281
C4.105(D42S3) = C23.15D12φ: D42S3/C3×D4C2 ⊆ Aut C496C4.105(D4:2S3)192,282
C4.106(D42S3) = C23.43D12φ: D42S3/C3×D4C2 ⊆ Aut C496C4.106(D4:2S3)192,294
C4.107(D42S3) = C22.D24φ: D42S3/C3×D4C2 ⊆ Aut C496C4.107(D4:2S3)192,295
C4.108(D42S3) = C23.18D12φ: D42S3/C3×D4C2 ⊆ Aut C496C4.108(D4:2S3)192,296
C4.109(D42S3) = Dic6.3Q8φ: D42S3/C3×D4C2 ⊆ Aut C4192C4.109(D4:2S3)192,388
C4.110(D42S3) = D123Q8φ: D42S3/C3×D4C2 ⊆ Aut C496C4.110(D4:2S3)192,401
C4.111(D42S3) = D124Q8φ: D42S3/C3×D4C2 ⊆ Aut C496C4.111(D4:2S3)192,405
C4.112(D42S3) = D12.3Q8φ: D42S3/C3×D4C2 ⊆ Aut C496C4.112(D4:2S3)192,406
C4.113(D42S3) = Dic63Q8φ: D42S3/C3×D4C2 ⊆ Aut C4192C4.113(D4:2S3)192,409
C4.114(D42S3) = Dic64Q8φ: D42S3/C3×D4C2 ⊆ Aut C4192C4.114(D4:2S3)192,410
C4.115(D42S3) = C42.105D6φ: D42S3/C3×D4C2 ⊆ Aut C496C4.115(D4:2S3)192,1100
C4.116(D42S3) = C42.106D6φ: D42S3/C3×D4C2 ⊆ Aut C496C4.116(D4:2S3)192,1101
C4.117(D42S3) = D46Dic6φ: D42S3/C3×D4C2 ⊆ Aut C496C4.117(D4:2S3)192,1102
C4.118(D42S3) = C42.117D6φ: D42S3/C3×D4C2 ⊆ Aut C496C4.118(D4:2S3)192,1122
C4.119(D42S3) = C42.119D6φ: D42S3/C3×D4C2 ⊆ Aut C496C4.119(D4:2S3)192,1124
C4.120(D42S3) = Dic3.5M4(2)central extension (φ=1)96C4.120(D4:2S3)192,277
C4.121(D42S3) = Dic3.M4(2)central extension (φ=1)96C4.121(D4:2S3)192,278
C4.122(D42S3) = C24⋊C4⋊C2central extension (φ=1)96C4.122(D4:2S3)192,279
C4.123(D42S3) = C3⋊D4⋊C8central extension (φ=1)96C4.123(D4:2S3)192,284
C4.124(D42S3) = D62M4(2)central extension (φ=1)96C4.124(D4:2S3)192,287
C4.125(D42S3) = Dic3⋊M4(2)central extension (φ=1)96C4.125(D4:2S3)192,288
C4.126(D42S3) = C3⋊C826D4central extension (φ=1)96C4.126(D4:2S3)192,289
C4.127(D42S3) = C42.27D6central extension (φ=1)192C4.127(D4:2S3)192,387
C4.128(D42S3) = Dic6⋊C8central extension (φ=1)192C4.128(D4:2S3)192,389
C4.129(D42S3) = C42.198D6central extension (φ=1)192C4.129(D4:2S3)192,390
C4.130(D42S3) = C42.200D6central extension (φ=1)96C4.130(D4:2S3)192,392
C4.131(D42S3) = C42.202D6central extension (φ=1)96C4.131(D4:2S3)192,394
C4.132(D42S3) = C42.31D6central extension (φ=1)96C4.132(D4:2S3)192,399
C4.133(D42S3) = D4×C3⋊C8central extension (φ=1)96C4.133(D4:2S3)192,569
C4.134(D42S3) = C42.47D6central extension (φ=1)96C4.134(D4:2S3)192,570
C4.135(D42S3) = C123M4(2)central extension (φ=1)96C4.135(D4:2S3)192,571
C4.136(D42S3) = C42.102D6central extension (φ=1)96C4.136(D4:2S3)192,1097
C4.137(D42S3) = C42.229D6central extension (φ=1)96C4.137(D4:2S3)192,1116

׿
×
𝔽