extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(D4⋊2S3) = C42.61D6 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.1(D4:2S3) | 192,613 |
C4.2(D4⋊2S3) = D12.23D4 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.2(D4:2S3) | 192,616 |
C4.3(D4⋊2S3) = C12⋊2D8 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.3(D4:2S3) | 192,631 |
C4.4(D4⋊2S3) = Dic6⋊9D4 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.4(D4:2S3) | 192,634 |
C4.5(D4⋊2S3) = C12⋊5SD16 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.5(D4:2S3) | 192,642 |
C4.6(D4⋊2S3) = C12⋊Q16 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.6(D4:2S3) | 192,649 |
C4.7(D4⋊2S3) = Dic3⋊D8 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.7(D4:2S3) | 192,709 |
C4.8(D4⋊2S3) = (C6×D8).C2 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.8(D4:2S3) | 192,712 |
C4.9(D4⋊2S3) = Dic3⋊3SD16 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.9(D4:2S3) | 192,721 |
C4.10(D4⋊2S3) = Dic3⋊5SD16 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.10(D4:2S3) | 192,722 |
C4.11(D4⋊2S3) = (C3×D4).D4 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.11(D4:2S3) | 192,724 |
C4.12(D4⋊2S3) = (C3×Q8).D4 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.12(D4:2S3) | 192,725 |
C4.13(D4⋊2S3) = Dic3⋊3Q16 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.13(D4:2S3) | 192,741 |
C4.14(D4⋊2S3) = (C2×Q16)⋊S3 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.14(D4:2S3) | 192,744 |
C4.15(D4⋊2S3) = C42.139D6 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.15(D4:2S3) | 192,1230 |
C4.16(D4⋊2S3) = C42.143D6 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.16(D4:2S3) | 192,1240 |
C4.17(D4⋊2S3) = C42.166D6 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.17(D4:2S3) | 192,1272 |
C4.18(D4⋊2S3) = Dic6⋊8Q8 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.18(D4:2S3) | 192,1280 |
C4.19(D4⋊2S3) = C42.177D6 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.19(D4:2S3) | 192,1291 |
C4.20(D4⋊2S3) = C42.62D6 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.20(D4:2S3) | 192,614 |
C4.21(D4⋊2S3) = C42.213D6 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.21(D4:2S3) | 192,615 |
C4.22(D4⋊2S3) = C12.16D8 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.22(D4:2S3) | 192,629 |
C4.23(D4⋊2S3) = C42.72D6 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.23(D4:2S3) | 192,630 |
C4.24(D4⋊2S3) = C12.9Q16 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.24(D4:2S3) | 192,638 |
C4.25(D4⋊2S3) = C42.77D6 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.25(D4:2S3) | 192,641 |
C4.26(D4⋊2S3) = Dic3×D8 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.26(D4:2S3) | 192,708 |
C4.27(D4⋊2S3) = D8⋊Dic3 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.27(D4:2S3) | 192,711 |
C4.28(D4⋊2S3) = D6⋊3D8 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.28(D4:2S3) | 192,716 |
C4.29(D4⋊2S3) = C24⋊12D4 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.29(D4:2S3) | 192,718 |
C4.30(D4⋊2S3) = Dic3×SD16 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.30(D4:2S3) | 192,720 |
C4.31(D4⋊2S3) = SD16⋊Dic3 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.31(D4:2S3) | 192,723 |
C4.32(D4⋊2S3) = C24⋊14D4 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.32(D4:2S3) | 192,730 |
C4.33(D4⋊2S3) = C24⋊8D4 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.33(D4:2S3) | 192,733 |
C4.34(D4⋊2S3) = Dic3×Q16 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.34(D4:2S3) | 192,740 |
C4.35(D4⋊2S3) = Q16⋊Dic3 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.35(D4:2S3) | 192,743 |
C4.36(D4⋊2S3) = D6⋊3Q16 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.36(D4:2S3) | 192,747 |
C4.37(D4⋊2S3) = C24.36D4 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.37(D4:2S3) | 192,748 |
C4.38(D4⋊2S3) = C42.234D6 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.38(D4:2S3) | 192,1239 |
C4.39(D4⋊2S3) = C42.144D6 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.39(D4:2S3) | 192,1241 |
C4.40(D4⋊2S3) = C42.168D6 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.40(D4:2S3) | 192,1278 |
C4.41(D4⋊2S3) = C42.241D6 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.41(D4:2S3) | 192,1287 |
C4.42(D4⋊2S3) = C42.176D6 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.42(D4:2S3) | 192,1290 |
C4.43(D4⋊2S3) = Dic3⋊4D8 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.43(D4:2S3) | 192,315 |
C4.44(D4⋊2S3) = D4.S3⋊C4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.44(D4:2S3) | 192,316 |
C4.45(D4⋊2S3) = Dic3⋊6SD16 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.45(D4:2S3) | 192,317 |
C4.46(D4⋊2S3) = Dic3.SD16 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.46(D4:2S3) | 192,319 |
C4.47(D4⋊2S3) = C4⋊C4.D6 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.47(D4:2S3) | 192,323 |
C4.48(D4⋊2S3) = C12⋊Q8⋊C2 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.48(D4:2S3) | 192,324 |
C4.49(D4⋊2S3) = (C2×C8).200D6 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.49(D4:2S3) | 192,327 |
C4.50(D4⋊2S3) = D4⋊S3⋊C4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.50(D4:2S3) | 192,344 |
C4.51(D4⋊2S3) = Dic3⋊7SD16 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.51(D4:2S3) | 192,347 |
C4.52(D4⋊2S3) = C3⋊Q16⋊C4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.52(D4:2S3) | 192,348 |
C4.53(D4⋊2S3) = Dic3⋊4Q16 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.53(D4:2S3) | 192,349 |
C4.54(D4⋊2S3) = Dic3.1Q16 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.54(D4:2S3) | 192,351 |
C4.55(D4⋊2S3) = (C2×C8).D6 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.55(D4:2S3) | 192,353 |
C4.56(D4⋊2S3) = (C2×Q8).36D6 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.56(D4:2S3) | 192,356 |
C4.57(D4⋊2S3) = Q8⋊C4⋊S3 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.57(D4:2S3) | 192,359 |
C4.58(D4⋊2S3) = Q8⋊3(C4×S3) | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.58(D4:2S3) | 192,376 |
C4.59(D4⋊2S3) = C3⋊C8⋊22D4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.59(D4:2S3) | 192,597 |
C4.60(D4⋊2S3) = C4⋊D4⋊S3 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.60(D4:2S3) | 192,598 |
C4.61(D4⋊2S3) = C3⋊C8⋊23D4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.61(D4:2S3) | 192,600 |
C4.62(D4⋊2S3) = C3⋊C8⋊5D4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.62(D4:2S3) | 192,601 |
C4.63(D4⋊2S3) = C3⋊C8⋊24D4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.63(D4:2S3) | 192,607 |
C4.64(D4⋊2S3) = C3⋊C8⋊6D4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.64(D4:2S3) | 192,608 |
C4.65(D4⋊2S3) = C3⋊C8.29D4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.65(D4:2S3) | 192,610 |
C4.66(D4⋊2S3) = C3⋊C8.6D4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.66(D4:2S3) | 192,611 |
C4.67(D4⋊2S3) = C4⋊C4.178D6 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.67(D4:2S3) | 192,1159 |
C4.68(D4⋊2S3) = C6.712- 1+4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.68(D4:2S3) | 192,1162 |
C4.69(D4⋊2S3) = C6.472+ 1+4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.69(D4:2S3) | 192,1178 |
C4.70(D4⋊2S3) = (Q8×Dic3)⋊C2 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.70(D4:2S3) | 192,1181 |
C4.71(D4⋊2S3) = C4⋊C4.187D6 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.71(D4:2S3) | 192,1183 |
C4.72(D4⋊2S3) = C6.152- 1+4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.72(D4:2S3) | 192,1184 |
C4.73(D4⋊2S3) = C6.242- 1+4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.73(D4:2S3) | 192,1202 |
C4.74(D4⋊2S3) = Dic3.D8 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.74(D4:2S3) | 192,318 |
C4.75(D4⋊2S3) = D4⋊Dic6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.75(D4:2S3) | 192,320 |
C4.76(D4⋊2S3) = D4.Dic6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.76(D4:2S3) | 192,322 |
C4.77(D4⋊2S3) = D4.2Dic6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.77(D4:2S3) | 192,325 |
C4.78(D4⋊2S3) = D6.D8 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.78(D4:2S3) | 192,333 |
C4.79(D4⋊2S3) = D6.SD16 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.79(D4:2S3) | 192,336 |
C4.80(D4⋊2S3) = D6⋊C8⋊11C2 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.80(D4:2S3) | 192,338 |
C4.81(D4⋊2S3) = C24⋊1C4⋊C2 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.81(D4:2S3) | 192,343 |
C4.82(D4⋊2S3) = Q8⋊2Dic6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 192 | | C4.82(D4:2S3) | 192,350 |
C4.83(D4⋊2S3) = Q8⋊3Dic6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 192 | | C4.83(D4:2S3) | 192,352 |
C4.84(D4⋊2S3) = Q8.3Dic6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 192 | | C4.84(D4:2S3) | 192,355 |
C4.85(D4⋊2S3) = Q8.4Dic6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 192 | | C4.85(D4:2S3) | 192,358 |
C4.86(D4⋊2S3) = D6.1SD16 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.86(D4:2S3) | 192,364 |
C4.87(D4⋊2S3) = D6.Q16 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.87(D4:2S3) | 192,370 |
C4.88(D4⋊2S3) = D6⋊C8.C2 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.88(D4:2S3) | 192,373 |
C4.89(D4⋊2S3) = C8⋊Dic3⋊C2 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.89(D4:2S3) | 192,374 |
C4.90(D4⋊2S3) = (C2×C6).D8 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.90(D4:2S3) | 192,592 |
C4.91(D4⋊2S3) = C4⋊D4.S3 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.91(D4:2S3) | 192,593 |
C4.92(D4⋊2S3) = C6.Q16⋊C2 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.92(D4:2S3) | 192,594 |
C4.93(D4⋊2S3) = (C2×Q8).49D6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.93(D4:2S3) | 192,602 |
C4.94(D4⋊2S3) = (C2×C6).Q16 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.94(D4:2S3) | 192,603 |
C4.95(D4⋊2S3) = (C2×Q8).51D6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.95(D4:2S3) | 192,604 |
C4.96(D4⋊2S3) = C6.432+ 1+4 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.96(D4:2S3) | 192,1173 |
C4.97(D4⋊2S3) = C6.452+ 1+4 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.97(D4:2S3) | 192,1175 |
C4.98(D4⋊2S3) = C6.1152+ 1+4 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.98(D4:2S3) | 192,1177 |
C4.99(D4⋊2S3) = C6.1182+ 1+4 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.99(D4:2S3) | 192,1194 |
C4.100(D4⋊2S3) = C6.212- 1+4 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.100(D4:2S3) | 192,1198 |
C4.101(D4⋊2S3) = C6.232- 1+4 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.101(D4:2S3) | 192,1200 |
C4.102(D4⋊2S3) = C6.772- 1+4 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.102(D4:2S3) | 192,1201 |
C4.103(D4⋊2S3) = C23.39D12 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.103(D4:2S3) | 192,280 |
C4.104(D4⋊2S3) = C23.40D12 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.104(D4:2S3) | 192,281 |
C4.105(D4⋊2S3) = C23.15D12 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.105(D4:2S3) | 192,282 |
C4.106(D4⋊2S3) = C23.43D12 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.106(D4:2S3) | 192,294 |
C4.107(D4⋊2S3) = C22.D24 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.107(D4:2S3) | 192,295 |
C4.108(D4⋊2S3) = C23.18D12 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.108(D4:2S3) | 192,296 |
C4.109(D4⋊2S3) = Dic6.3Q8 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 192 | | C4.109(D4:2S3) | 192,388 |
C4.110(D4⋊2S3) = D12⋊3Q8 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.110(D4:2S3) | 192,401 |
C4.111(D4⋊2S3) = D12⋊4Q8 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.111(D4:2S3) | 192,405 |
C4.112(D4⋊2S3) = D12.3Q8 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.112(D4:2S3) | 192,406 |
C4.113(D4⋊2S3) = Dic6⋊3Q8 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 192 | | C4.113(D4:2S3) | 192,409 |
C4.114(D4⋊2S3) = Dic6⋊4Q8 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 192 | | C4.114(D4:2S3) | 192,410 |
C4.115(D4⋊2S3) = C42.105D6 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.115(D4:2S3) | 192,1100 |
C4.116(D4⋊2S3) = C42.106D6 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.116(D4:2S3) | 192,1101 |
C4.117(D4⋊2S3) = D4⋊6Dic6 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.117(D4:2S3) | 192,1102 |
C4.118(D4⋊2S3) = C42.117D6 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.118(D4:2S3) | 192,1122 |
C4.119(D4⋊2S3) = C42.119D6 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C4 | 96 | | C4.119(D4:2S3) | 192,1124 |
C4.120(D4⋊2S3) = Dic3.5M4(2) | central extension (φ=1) | 96 | | C4.120(D4:2S3) | 192,277 |
C4.121(D4⋊2S3) = Dic3.M4(2) | central extension (φ=1) | 96 | | C4.121(D4:2S3) | 192,278 |
C4.122(D4⋊2S3) = C24⋊C4⋊C2 | central extension (φ=1) | 96 | | C4.122(D4:2S3) | 192,279 |
C4.123(D4⋊2S3) = C3⋊D4⋊C8 | central extension (φ=1) | 96 | | C4.123(D4:2S3) | 192,284 |
C4.124(D4⋊2S3) = D6⋊2M4(2) | central extension (φ=1) | 96 | | C4.124(D4:2S3) | 192,287 |
C4.125(D4⋊2S3) = Dic3⋊M4(2) | central extension (φ=1) | 96 | | C4.125(D4:2S3) | 192,288 |
C4.126(D4⋊2S3) = C3⋊C8⋊26D4 | central extension (φ=1) | 96 | | C4.126(D4:2S3) | 192,289 |
C4.127(D4⋊2S3) = C42.27D6 | central extension (φ=1) | 192 | | C4.127(D4:2S3) | 192,387 |
C4.128(D4⋊2S3) = Dic6⋊C8 | central extension (φ=1) | 192 | | C4.128(D4:2S3) | 192,389 |
C4.129(D4⋊2S3) = C42.198D6 | central extension (φ=1) | 192 | | C4.129(D4:2S3) | 192,390 |
C4.130(D4⋊2S3) = C42.200D6 | central extension (φ=1) | 96 | | C4.130(D4:2S3) | 192,392 |
C4.131(D4⋊2S3) = C42.202D6 | central extension (φ=1) | 96 | | C4.131(D4:2S3) | 192,394 |
C4.132(D4⋊2S3) = C42.31D6 | central extension (φ=1) | 96 | | C4.132(D4:2S3) | 192,399 |
C4.133(D4⋊2S3) = D4×C3⋊C8 | central extension (φ=1) | 96 | | C4.133(D4:2S3) | 192,569 |
C4.134(D4⋊2S3) = C42.47D6 | central extension (φ=1) | 96 | | C4.134(D4:2S3) | 192,570 |
C4.135(D4⋊2S3) = C12⋊3M4(2) | central extension (φ=1) | 96 | | C4.135(D4:2S3) | 192,571 |
C4.136(D4⋊2S3) = C42.102D6 | central extension (φ=1) | 96 | | C4.136(D4:2S3) | 192,1097 |
C4.137(D4⋊2S3) = C42.229D6 | central extension (φ=1) | 96 | | C4.137(D4:2S3) | 192,1116 |