Copied to
clipboard

G = C248D4order 192 = 26·3

8th semidirect product of C24 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C248D4, C37(C8⋊D4), C85(C3⋊D4), (C2×C8).90D6, D63Q86C2, (C6×SD16)⋊3C2, (C2×SD16)⋊1S3, C241C427C2, (C2×D4).75D6, (C2×Q8).80D6, D63D4.9C2, C12.178(C2×D4), Q82Dic331C2, D4⋊Dic336C2, C2.30(Q83D6), C6.80(C8⋊C22), (C2×Dic3).73D4, (C22×S3).39D4, C22.271(S3×D4), (C6×Q8).80C22, C12.102(C4○D4), C4.33(D42S3), C2.20(D63D4), C6.117(C4⋊D4), (C2×C12).451C23, (C2×C24).115C22, C2.31(D4.D6), (C6×D4).100C22, C6.51(C8.C22), C4⋊Dic3.178C22, (C2×C8⋊S3)⋊3C2, C4.83(C2×C3⋊D4), (C2×C6).363(C2×D4), (S3×C2×C4).51C22, (C2×C3⋊C8).160C22, (C2×C4).540(C22×S3), SmallGroup(192,733)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C248D4
C1C3C6C2×C6C2×C12S3×C2×C4C2×C8⋊S3 — C248D4
C3C6C2×C12 — C248D4
C1C22C2×C4C2×SD16

Generators and relations for C248D4
 G = < a,b,c | a24=b4=c2=1, bab-1=a-1, cac=a5, cbc=b-1 >

Subgroups: 360 in 120 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C3⋊C8, C24, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, C22×S3, C22×C6, D4⋊C4, Q8⋊C4, C2.D8, C4⋊D4, C22⋊Q8, C2×M4(2), C2×SD16, C8⋊S3, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C2×C24, C3×SD16, S3×C2×C4, C2×C3⋊D4, C6×D4, C6×Q8, C8⋊D4, C241C4, D4⋊Dic3, Q82Dic3, C2×C8⋊S3, D63D4, D63Q8, C6×SD16, C248D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊D4, C22×S3, C4⋊D4, C8⋊C22, C8.C22, S3×D4, D42S3, C2×C3⋊D4, C8⋊D4, Q83D6, D4.D6, D63D4, C248D4

Character table of C248D4

 class 12A2B2C2D2E34A4B4C4D4E4F6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
 size 111181222281224242228844121244884444
ρ1111111111111111111111111111111    trivial
ρ21111-11111-11-1-1111-1-1111111-1-11111    linear of order 2
ρ311111-11111-1-1-11111111-1-111111111    linear of order 2
ρ41111-1-1111-1-111111-1-111-1-111-1-11111    linear of order 2
ρ511111-1111-1-11-111111-1-11111-1-1-1-1-1-1    linear of order 2
ρ61111-1-11111-1-11111-1-1-1-1111111-1-1-1-1    linear of order 2
ρ7111111111-11-1111111-1-1-1-111-1-1-1-1-1-1    linear of order 2
ρ81111-11111111-1111-1-1-1-1-1-11111-1-1-1-1    linear of order 2
ρ92222-20-122-2000-1-1-1112200-1-111-1-1-1-1    orthogonal lifted from D6
ρ10222220-122-2000-1-1-1-1-1-2-200-1-1111111    orthogonal lifted from D6
ρ1122220-22-2-20200222000000-2-2000000    orthogonal lifted from D4
ρ122222022-2-20-200222000000-2-2000000    orthogonal lifted from D4
ρ132222-20-1222000-1-1-111-2-200-1-1-1-11111    orthogonal lifted from D6
ρ142-2-220022-20000-2-2200-2200-2200-22-22    orthogonal lifted from D4
ρ15222220-1222000-1-1-1-1-12200-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ162-2-220022-20000-2-22002-200-22002-22-2    orthogonal lifted from D4
ρ172-2-2200-12-2000011-1-3--32-2001-1--3-3-11-11    complex lifted from C3⋊D4
ρ182-2-2200-12-2000011-1-3--3-22001-1-3--31-11-1    complex lifted from C3⋊D4
ρ192-2-2200-12-2000011-1--3-3-22001-1--3-31-11-1    complex lifted from C3⋊D4
ρ202-2-2200-12-2000011-1--3-32-2001-1-3--3-11-11    complex lifted from C3⋊D4
ρ212-2-22002-220000-2-2200002i-2i2-2000000    complex lifted from C4○D4
ρ222-2-22002-220000-2-220000-2i2i2-2000000    complex lifted from C4○D4
ρ234-44-40040000004-4-400000000000000    orthogonal lifted from C8⋊C22
ρ24444400-2-4-40000-2-2-200000022000000    orthogonal lifted from S3×D4
ρ254-44-400-2000000-22200000000006-6-66    orthogonal lifted from Q83D6
ρ264-44-400-2000000-2220000000000-666-6    orthogonal lifted from Q83D6
ρ2744-4-4004000000-44-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2844-4-400-20000002-22000000000066-6-6    symplectic lifted from D4.D6, Schur index 2
ρ294-4-4400-2-44000022-2000000-22000000    symplectic lifted from D42S3, Schur index 2
ρ3044-4-400-20000002-220000000000-6-666    symplectic lifted from D4.D6, Schur index 2

Smallest permutation representation of C248D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 66 76 28)(2 65 77 27)(3 64 78 26)(4 63 79 25)(5 62 80 48)(6 61 81 47)(7 60 82 46)(8 59 83 45)(9 58 84 44)(10 57 85 43)(11 56 86 42)(12 55 87 41)(13 54 88 40)(14 53 89 39)(15 52 90 38)(16 51 91 37)(17 50 92 36)(18 49 93 35)(19 72 94 34)(20 71 95 33)(21 70 96 32)(22 69 73 31)(23 68 74 30)(24 67 75 29)
(2 6)(3 11)(4 16)(5 21)(8 12)(9 17)(10 22)(14 18)(15 23)(20 24)(25 51)(26 56)(27 61)(28 66)(29 71)(30 52)(31 57)(32 62)(33 67)(34 72)(35 53)(36 58)(37 63)(38 68)(39 49)(40 54)(41 59)(42 64)(43 69)(44 50)(45 55)(46 60)(47 65)(48 70)(73 85)(74 90)(75 95)(77 81)(78 86)(79 91)(80 96)(83 87)(84 92)(89 93)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,66,76,28)(2,65,77,27)(3,64,78,26)(4,63,79,25)(5,62,80,48)(6,61,81,47)(7,60,82,46)(8,59,83,45)(9,58,84,44)(10,57,85,43)(11,56,86,42)(12,55,87,41)(13,54,88,40)(14,53,89,39)(15,52,90,38)(16,51,91,37)(17,50,92,36)(18,49,93,35)(19,72,94,34)(20,71,95,33)(21,70,96,32)(22,69,73,31)(23,68,74,30)(24,67,75,29), (2,6)(3,11)(4,16)(5,21)(8,12)(9,17)(10,22)(14,18)(15,23)(20,24)(25,51)(26,56)(27,61)(28,66)(29,71)(30,52)(31,57)(32,62)(33,67)(34,72)(35,53)(36,58)(37,63)(38,68)(39,49)(40,54)(41,59)(42,64)(43,69)(44,50)(45,55)(46,60)(47,65)(48,70)(73,85)(74,90)(75,95)(77,81)(78,86)(79,91)(80,96)(83,87)(84,92)(89,93)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,66,76,28)(2,65,77,27)(3,64,78,26)(4,63,79,25)(5,62,80,48)(6,61,81,47)(7,60,82,46)(8,59,83,45)(9,58,84,44)(10,57,85,43)(11,56,86,42)(12,55,87,41)(13,54,88,40)(14,53,89,39)(15,52,90,38)(16,51,91,37)(17,50,92,36)(18,49,93,35)(19,72,94,34)(20,71,95,33)(21,70,96,32)(22,69,73,31)(23,68,74,30)(24,67,75,29), (2,6)(3,11)(4,16)(5,21)(8,12)(9,17)(10,22)(14,18)(15,23)(20,24)(25,51)(26,56)(27,61)(28,66)(29,71)(30,52)(31,57)(32,62)(33,67)(34,72)(35,53)(36,58)(37,63)(38,68)(39,49)(40,54)(41,59)(42,64)(43,69)(44,50)(45,55)(46,60)(47,65)(48,70)(73,85)(74,90)(75,95)(77,81)(78,86)(79,91)(80,96)(83,87)(84,92)(89,93) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,66,76,28),(2,65,77,27),(3,64,78,26),(4,63,79,25),(5,62,80,48),(6,61,81,47),(7,60,82,46),(8,59,83,45),(9,58,84,44),(10,57,85,43),(11,56,86,42),(12,55,87,41),(13,54,88,40),(14,53,89,39),(15,52,90,38),(16,51,91,37),(17,50,92,36),(18,49,93,35),(19,72,94,34),(20,71,95,33),(21,70,96,32),(22,69,73,31),(23,68,74,30),(24,67,75,29)], [(2,6),(3,11),(4,16),(5,21),(8,12),(9,17),(10,22),(14,18),(15,23),(20,24),(25,51),(26,56),(27,61),(28,66),(29,71),(30,52),(31,57),(32,62),(33,67),(34,72),(35,53),(36,58),(37,63),(38,68),(39,49),(40,54),(41,59),(42,64),(43,69),(44,50),(45,55),(46,60),(47,65),(48,70),(73,85),(74,90),(75,95),(77,81),(78,86),(79,91),(80,96),(83,87),(84,92),(89,93)]])

Matrix representation of C248D4 in GL6(𝔽73)

7200000
0720000
0034393934
003468395
0034393439
0034683468
,
46710000
0270000
0015305027
0015585023
0050275843
0050235815
,
100000
46720000
001000
00727200
000010
00007272

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,34,34,34,34,0,0,39,68,39,68,0,0,39,39,34,34,0,0,34,5,39,68],[46,0,0,0,0,0,71,27,0,0,0,0,0,0,15,15,50,50,0,0,30,58,27,23,0,0,50,50,58,58,0,0,27,23,43,15],[1,46,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72] >;

C248D4 in GAP, Magma, Sage, TeX

C_{24}\rtimes_8D_4
% in TeX

G:=Group("C24:8D4");
// GroupNames label

G:=SmallGroup(192,733);
// by ID

G=gap.SmallGroup(192,733);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,120,254,555,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=c^2=1,b*a*b^-1=a^-1,c*a*c=a^5,c*b*c=b^-1>;
// generators/relations

Export

Character table of C248D4 in TeX

׿
×
𝔽