Copied to
clipboard

G = (C2×C8).200D6order 192 = 26·3

9th non-split extension by C2×C8 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C4.8D6, (C2×D4).22D6, (C2×C8).200D6, (C8×Dic3)⋊20C2, D4⋊C4.1S3, C12.6(C4○D4), C6.38(C4○D8), C6.SD163C2, C4.Dic64C2, C4.23(C4○D12), C2.8(D83S3), C2.Dic1222C2, (C2×Dic3).87D4, D4⋊Dic3.6C2, (C6×D4).29C22, C22.170(S3×D4), C4.49(D42S3), (C2×C12).208C23, (C2×C24).224C22, C23.12D6.4C2, C2.9(Q8.7D6), C6.25(C4.4D4), C4⋊Dic3.66C22, (C2×Dic6).54C22, C32(C42.78C22), (C4×Dic3).223C22, C2.15(C23.11D6), (C2×C6).221(C2×D4), (C3×C4⋊C4).13C22, (C2×C3⋊C8).210C22, (C3×D4⋊C4).13C2, (C2×C4).315(C22×S3), SmallGroup(192,327)

Series: Derived Chief Lower central Upper central

C1C2×C12 — (C2×C8).200D6
C1C3C6C12C2×C12C4×Dic3C23.12D6 — (C2×C8).200D6
C3C6C2×C12 — (C2×C8).200D6
C1C22C2×C4D4⋊C4

Generators and relations for (C2×C8).200D6
 G = < a,b,c,d | a2=b8=c6=1, d2=b4, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=ab-1, dcd-1=ab4c-1 >

Subgroups: 264 in 96 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×D4, C2×Q8, C3⋊C8, C24, Dic6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×D4, C22×C6, C4×C8, D4⋊C4, D4⋊C4, Q8⋊C4, C4.4D4, C42.C2, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, C6.D4, C3×C4⋊C4, C2×C24, C2×Dic6, C6×D4, C42.78C22, C6.SD16, C8×Dic3, C2.Dic12, D4⋊Dic3, C3×D4⋊C4, C4.Dic6, C23.12D6, (C2×C8).200D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C4.4D4, C4○D8, C4○D12, S3×D4, D42S3, C42.78C22, C23.11D6, D83S3, Q8.7D6, (C2×C8).200D6

Smallest permutation representation of (C2×C8).200D6
On 96 points
Generators in S96
(1 81)(2 82)(3 83)(4 84)(5 85)(6 86)(7 87)(8 88)(9 53)(10 54)(11 55)(12 56)(13 49)(14 50)(15 51)(16 52)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 95)(26 96)(27 89)(28 90)(29 91)(30 92)(31 93)(32 94)(33 58)(34 59)(35 60)(36 61)(37 62)(38 63)(39 64)(40 57)(41 74)(42 75)(43 76)(44 77)(45 78)(46 79)(47 80)(48 73)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 51 42)(2 14 43 88 52 74)(3 49 44 7 53 48)(4 12 45 86 54 80)(5 55 46)(6 10 47 84 56 78)(8 16 41 82 50 76)(9 73 83 13 77 87)(11 79 85)(15 75 81)(17 34 89 23 36 95)(18 58 90 70 37 32)(19 40 91 21 38 93)(20 64 92 68 39 30)(22 62 94 66 33 28)(24 60 96 72 35 26)(25 65 59 27 71 61)(29 69 63 31 67 57)
(1 22 5 18)(2 69 6 65)(3 20 7 24)(4 67 8 71)(9 30 13 26)(10 91 14 95)(11 28 15 32)(12 89 16 93)(17 82 21 86)(19 88 23 84)(25 54 29 50)(27 52 31 56)(33 46 37 42)(34 78 38 74)(35 44 39 48)(36 76 40 80)(41 59 45 63)(43 57 47 61)(49 96 53 92)(51 94 55 90)(58 79 62 75)(60 77 64 73)(66 81 70 85)(68 87 72 83)

G:=sub<Sym(96)| (1,81)(2,82)(3,83)(4,84)(5,85)(6,86)(7,87)(8,88)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,95)(26,96)(27,89)(28,90)(29,91)(30,92)(31,93)(32,94)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,57)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,73), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,51,42)(2,14,43,88,52,74)(3,49,44,7,53,48)(4,12,45,86,54,80)(5,55,46)(6,10,47,84,56,78)(8,16,41,82,50,76)(9,73,83,13,77,87)(11,79,85)(15,75,81)(17,34,89,23,36,95)(18,58,90,70,37,32)(19,40,91,21,38,93)(20,64,92,68,39,30)(22,62,94,66,33,28)(24,60,96,72,35,26)(25,65,59,27,71,61)(29,69,63,31,67,57), (1,22,5,18)(2,69,6,65)(3,20,7,24)(4,67,8,71)(9,30,13,26)(10,91,14,95)(11,28,15,32)(12,89,16,93)(17,82,21,86)(19,88,23,84)(25,54,29,50)(27,52,31,56)(33,46,37,42)(34,78,38,74)(35,44,39,48)(36,76,40,80)(41,59,45,63)(43,57,47,61)(49,96,53,92)(51,94,55,90)(58,79,62,75)(60,77,64,73)(66,81,70,85)(68,87,72,83)>;

G:=Group( (1,81)(2,82)(3,83)(4,84)(5,85)(6,86)(7,87)(8,88)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,95)(26,96)(27,89)(28,90)(29,91)(30,92)(31,93)(32,94)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,57)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,73), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,51,42)(2,14,43,88,52,74)(3,49,44,7,53,48)(4,12,45,86,54,80)(5,55,46)(6,10,47,84,56,78)(8,16,41,82,50,76)(9,73,83,13,77,87)(11,79,85)(15,75,81)(17,34,89,23,36,95)(18,58,90,70,37,32)(19,40,91,21,38,93)(20,64,92,68,39,30)(22,62,94,66,33,28)(24,60,96,72,35,26)(25,65,59,27,71,61)(29,69,63,31,67,57), (1,22,5,18)(2,69,6,65)(3,20,7,24)(4,67,8,71)(9,30,13,26)(10,91,14,95)(11,28,15,32)(12,89,16,93)(17,82,21,86)(19,88,23,84)(25,54,29,50)(27,52,31,56)(33,46,37,42)(34,78,38,74)(35,44,39,48)(36,76,40,80)(41,59,45,63)(43,57,47,61)(49,96,53,92)(51,94,55,90)(58,79,62,75)(60,77,64,73)(66,81,70,85)(68,87,72,83) );

G=PermutationGroup([[(1,81),(2,82),(3,83),(4,84),(5,85),(6,86),(7,87),(8,88),(9,53),(10,54),(11,55),(12,56),(13,49),(14,50),(15,51),(16,52),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,95),(26,96),(27,89),(28,90),(29,91),(30,92),(31,93),(32,94),(33,58),(34,59),(35,60),(36,61),(37,62),(38,63),(39,64),(40,57),(41,74),(42,75),(43,76),(44,77),(45,78),(46,79),(47,80),(48,73)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,51,42),(2,14,43,88,52,74),(3,49,44,7,53,48),(4,12,45,86,54,80),(5,55,46),(6,10,47,84,56,78),(8,16,41,82,50,76),(9,73,83,13,77,87),(11,79,85),(15,75,81),(17,34,89,23,36,95),(18,58,90,70,37,32),(19,40,91,21,38,93),(20,64,92,68,39,30),(22,62,94,66,33,28),(24,60,96,72,35,26),(25,65,59,27,71,61),(29,69,63,31,67,57)], [(1,22,5,18),(2,69,6,65),(3,20,7,24),(4,67,8,71),(9,30,13,26),(10,91,14,95),(11,28,15,32),(12,89,16,93),(17,82,21,86),(19,88,23,84),(25,54,29,50),(27,52,31,56),(33,46,37,42),(34,78,38,74),(35,44,39,48),(36,76,40,80),(41,59,45,63),(43,57,47,61),(49,96,53,92),(51,94,55,90),(58,79,62,75),(60,77,64,73),(66,81,70,85),(68,87,72,83)]])

36 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E8A8B8C8D8E8F8G8H12A12B12C12D24A24B24C24D
order12222344444444466666888888881212121224242424
size11118222666682424222882222666644884444

36 irreducible representations

dim11111111222222224444
type+++++++++++++-+-
imageC1C2C2C2C2C2C2C2S3D4D6D6D6C4○D4C4○D8C4○D12D42S3S3×D4D83S3Q8.7D6
kernel(C2×C8).200D6C6.SD16C8×Dic3C2.Dic12D4⋊Dic3C3×D4⋊C4C4.Dic6C23.12D6D4⋊C4C2×Dic3C4⋊C4C2×C8C2×D4C12C6C4C4C22C2C2
# reps11111111121114841122

Matrix representation of (C2×C8).200D6 in GL4(𝔽73) generated by

72000
07200
00720
00072
,
67600
676700
00270
00027
,
1000
07200
0080
00509
,
46000
02700
004955
003624
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[67,67,0,0,6,67,0,0,0,0,27,0,0,0,0,27],[1,0,0,0,0,72,0,0,0,0,8,50,0,0,0,9],[46,0,0,0,0,27,0,0,0,0,49,36,0,0,55,24] >;

(C2×C8).200D6 in GAP, Magma, Sage, TeX

(C_2\times C_8)._{200}D_6
% in TeX

G:=Group("(C2xC8).200D6");
// GroupNames label

G:=SmallGroup(192,327);
// by ID

G=gap.SmallGroup(192,327);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,701,1094,135,100,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^6=1,d^2=b^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=a*b^-1,d*c*d^-1=a*b^4*c^-1>;
// generators/relations

׿
×
𝔽