| extension | φ:Q→Aut N | d | ρ | Label | ID | 
|---|
| C6.12+ 1+4 = C23⋊3Dic6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.1ES+(2,2) | 192,1042 | 
| C6.22+ 1+4 = C24.35D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.2ES+(2,2) | 192,1045 | 
| C6.32+ 1+4 = C24.38D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.3ES+(2,2) | 192,1049 | 
| C6.42+ 1+4 = C23⋊4D12 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.4ES+(2,2) | 192,1052 | 
| C6.52+ 1+4 = C24.41D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.5ES+(2,2) | 192,1053 | 
| C6.62+ 1+4 = C24.42D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.6ES+(2,2) | 192,1054 | 
| C6.72+ 1+4 = C6.72+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.7ES+(2,2) | 192,1059 | 
| C6.82+ 1+4 = C6.82+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.8ES+(2,2) | 192,1063 | 
| C6.92+ 1+4 = C6.2+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.9ES+(2,2) | 192,1069 | 
| C6.102+ 1+4 = C6.102+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.10ES+(2,2) | 192,1070 | 
| C6.112+ 1+4 = C6.112+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.11ES+(2,2) | 192,1073 | 
| C6.122+ 1+4 = C6.62- 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.12ES+(2,2) | 192,1074 | 
| C6.132+ 1+4 = D4⋊5Dic6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.13ES+(2,2) | 192,1098 | 
| C6.142+ 1+4 = C42.104D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.14ES+(2,2) | 192,1099 | 
| C6.152+ 1+4 = C42⋊13D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.15ES+(2,2) | 192,1104 | 
| C6.162+ 1+4 = C42.108D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.16ES+(2,2) | 192,1105 | 
| C6.172+ 1+4 = D4⋊5D12 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.17ES+(2,2) | 192,1113 | 
| C6.182+ 1+4 = C42⋊18D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.18ES+(2,2) | 192,1115 | 
| C6.192+ 1+4 = C42.113D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.19ES+(2,2) | 192,1117 | 
| C6.202+ 1+4 = C42.114D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.20ES+(2,2) | 192,1118 | 
| C6.212+ 1+4 = C42⋊19D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.21ES+(2,2) | 192,1119 | 
| C6.222+ 1+4 = C42.115D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.22ES+(2,2) | 192,1120 | 
| C6.232+ 1+4 = C42.118D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.23ES+(2,2) | 192,1123 | 
| C6.242+ 1+4 = C24.43D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.24ES+(2,2) | 192,1146 | 
| C6.252+ 1+4 = C24⋊7D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.25ES+(2,2) | 192,1148 | 
| C6.262+ 1+4 = C24⋊8D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.26ES+(2,2) | 192,1149 | 
| C6.272+ 1+4 = C24.44D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.27ES+(2,2) | 192,1150 | 
| C6.282+ 1+4 = C24.45D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.28ES+(2,2) | 192,1151 | 
| C6.292+ 1+4 = C24.46D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.29ES+(2,2) | 192,1152 | 
| C6.302+ 1+4 = C24⋊9D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.30ES+(2,2) | 192,1153 | 
| C6.312+ 1+4 = C24.47D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.31ES+(2,2) | 192,1154 | 
| C6.322+ 1+4 = C6.322+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.32ES+(2,2) | 192,1156 | 
| C6.332+ 1+4 = Dic6⋊20D4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.33ES+(2,2) | 192,1158 | 
| C6.342+ 1+4 = C6.342+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.34ES+(2,2) | 192,1160 | 
| C6.352+ 1+4 = C6.702- 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.35ES+(2,2) | 192,1161 | 
| C6.362+ 1+4 = C6.712- 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.36ES+(2,2) | 192,1162 | 
| C6.372+ 1+4 = C6.372+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.37ES+(2,2) | 192,1164 | 
| C6.382+ 1+4 = C6.382+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.38ES+(2,2) | 192,1166 | 
| C6.392+ 1+4 = C6.722- 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.39ES+(2,2) | 192,1167 | 
| C6.402+ 1+4 = C6.402+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.40ES+(2,2) | 192,1169 | 
| C6.412+ 1+4 = D12⋊20D4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.41ES+(2,2) | 192,1171 | 
| C6.422+ 1+4 = C6.422+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.42ES+(2,2) | 192,1172 | 
| C6.432+ 1+4 = C6.432+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.43ES+(2,2) | 192,1173 | 
| C6.442+ 1+4 = C6.442+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.44ES+(2,2) | 192,1174 | 
| C6.452+ 1+4 = C6.452+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.45ES+(2,2) | 192,1175 | 
| C6.462+ 1+4 = C6.462+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.46ES+(2,2) | 192,1176 | 
| C6.472+ 1+4 = C6.472+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.47ES+(2,2) | 192,1178 | 
| C6.482+ 1+4 = C6.482+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.48ES+(2,2) | 192,1179 | 
| C6.492+ 1+4 = C6.492+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.49ES+(2,2) | 192,1180 | 
| C6.502+ 1+4 = C6.752- 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.50ES+(2,2) | 192,1182 | 
| C6.512+ 1+4 = C6.512+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.51ES+(2,2) | 192,1193 | 
| C6.522+ 1+4 = C6.522+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.52ES+(2,2) | 192,1195 | 
| C6.532+ 1+4 = C6.532+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.53ES+(2,2) | 192,1196 | 
| C6.542+ 1+4 = C6.202- 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.54ES+(2,2) | 192,1197 | 
| C6.552+ 1+4 = C6.222- 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.55ES+(2,2) | 192,1199 | 
| C6.562+ 1+4 = C6.562+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.56ES+(2,2) | 192,1203 | 
| C6.572+ 1+4 = C6.782- 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.57ES+(2,2) | 192,1204 | 
| C6.582+ 1+4 = C6.252- 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.58ES+(2,2) | 192,1205 | 
| C6.592+ 1+4 = C6.592+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.59ES+(2,2) | 192,1206 | 
| C6.602+ 1+4 = C6.812- 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.60ES+(2,2) | 192,1210 | 
| C6.612+ 1+4 = C6.612+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.61ES+(2,2) | 192,1216 | 
| C6.622+ 1+4 = C6.622+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.62ES+(2,2) | 192,1218 | 
| C6.632+ 1+4 = C6.632+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.63ES+(2,2) | 192,1219 | 
| C6.642+ 1+4 = C6.642+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.64ES+(2,2) | 192,1220 | 
| C6.652+ 1+4 = C6.652+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.65ES+(2,2) | 192,1221 | 
| C6.662+ 1+4 = C6.662+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.66ES+(2,2) | 192,1222 | 
| C6.672+ 1+4 = C6.672+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.67ES+(2,2) | 192,1223 | 
| C6.682+ 1+4 = C6.682+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.68ES+(2,2) | 192,1225 | 
| C6.692+ 1+4 = C6.692+ 1+4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.69ES+(2,2) | 192,1226 | 
| C6.702+ 1+4 = C42.137D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.70ES+(2,2) | 192,1228 | 
| C6.712+ 1+4 = C42.138D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.71ES+(2,2) | 192,1229 | 
| C6.722+ 1+4 = C42.140D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.72ES+(2,2) | 192,1231 | 
| C6.732+ 1+4 = C42⋊23D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.73ES+(2,2) | 192,1238 | 
| C6.742+ 1+4 = C42.145D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.74ES+(2,2) | 192,1243 | 
| C6.752+ 1+4 = C42.166D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.75ES+(2,2) | 192,1272 | 
| C6.762+ 1+4 = C42⋊28D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.76ES+(2,2) | 192,1274 | 
| C6.772+ 1+4 = D12⋊11D4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.77ES+(2,2) | 192,1276 | 
| C6.782+ 1+4 = Dic6⋊11D4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.78ES+(2,2) | 192,1277 | 
| C6.792+ 1+4 = C42.168D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.79ES+(2,2) | 192,1278 | 
| C6.802+ 1+4 = C42⋊30D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.80ES+(2,2) | 192,1279 | 
| C6.812+ 1+4 = Dic6⋊9Q8 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 192 |  | C6.81ES+(2,2) | 192,1281 | 
| C6.822+ 1+4 = C42.174D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.82ES+(2,2) | 192,1288 | 
| C6.832+ 1+4 = D12⋊9Q8 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.83ES+(2,2) | 192,1289 | 
| C6.842+ 1+4 = C42.178D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.84ES+(2,2) | 192,1292 | 
| C6.852+ 1+4 = C42.179D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.85ES+(2,2) | 192,1293 | 
| C6.862+ 1+4 = C42.180D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 96 |  | C6.86ES+(2,2) | 192,1294 | 
| C6.872+ 1+4 = C24.49D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.87ES+(2,2) | 192,1357 | 
| C6.882+ 1+4 = D4×C3⋊D4 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.88ES+(2,2) | 192,1360 | 
| C6.892+ 1+4 = C24⋊12D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.89ES+(2,2) | 192,1363 | 
| C6.902+ 1+4 = C24.52D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.90ES+(2,2) | 192,1364 | 
| C6.912+ 1+4 = C24.53D6 | φ: 2+ 1+4/C2×D4 → C2 ⊆ Aut C6 | 48 |  | C6.91ES+(2,2) | 192,1365 | 
| C6.922+ 1+4 = C42.90D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.92ES+(2,2) | 192,1078 | 
| C6.932+ 1+4 = C42⋊9D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.93ES+(2,2) | 192,1080 | 
| C6.942+ 1+4 = C42.91D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.94ES+(2,2) | 192,1082 | 
| C6.952+ 1+4 = C42⋊11D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.95ES+(2,2) | 192,1084 | 
| C6.962+ 1+4 = C42⋊12D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.96ES+(2,2) | 192,1086 | 
| C6.972+ 1+4 = C42.95D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.97ES+(2,2) | 192,1089 | 
| C6.982+ 1+4 = C42.97D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.98ES+(2,2) | 192,1091 | 
| C6.992+ 1+4 = C42.99D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.99ES+(2,2) | 192,1093 | 
| C6.1002+ 1+4 = C42.100D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.100ES+(2,2) | 192,1094 | 
| C6.1012+ 1+4 = D4⋊6Dic6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.101ES+(2,2) | 192,1102 | 
| C6.1022+ 1+4 = D4×D12 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.102ES+(2,2) | 192,1108 | 
| C6.1032+ 1+4 = D12⋊23D4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.103ES+(2,2) | 192,1109 | 
| C6.1042+ 1+4 = Dic6⋊24D4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.104ES+(2,2) | 192,1112 | 
| C6.1052+ 1+4 = C42.116D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.105ES+(2,2) | 192,1121 | 
| C6.1062+ 1+4 = C42.117D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.106ES+(2,2) | 192,1122 | 
| C6.1072+ 1+4 = C42.119D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.107ES+(2,2) | 192,1124 | 
| C6.1082+ 1+4 = Q8×Dic6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 192 |  | C6.108ES+(2,2) | 192,1125 | 
| C6.1092+ 1+4 = C42.126D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.109ES+(2,2) | 192,1133 | 
| C6.1102+ 1+4 = Q8⋊7D12 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.110ES+(2,2) | 192,1136 | 
| C6.1112+ 1+4 = D12⋊10Q8 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.111ES+(2,2) | 192,1138 | 
| C6.1122+ 1+4 = C42.133D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.112ES+(2,2) | 192,1141 | 
| C6.1132+ 1+4 = C42.136D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.113ES+(2,2) | 192,1144 | 
| C6.1142+ 1+4 = D12⋊19D4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.114ES+(2,2) | 192,1168 | 
| C6.1152+ 1+4 = C6.1152+ 1+4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.115ES+(2,2) | 192,1177 | 
| C6.1162+ 1+4 = C6.172- 1+4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.116ES+(2,2) | 192,1188 | 
| C6.1172+ 1+4 = D12⋊21D4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.117ES+(2,2) | 192,1189 | 
| C6.1182+ 1+4 = C6.1182+ 1+4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.118ES+(2,2) | 192,1194 | 
| C6.1192+ 1+4 = C6.242- 1+4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.119ES+(2,2) | 192,1202 | 
| C6.1202+ 1+4 = C6.1202+ 1+4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.120ES+(2,2) | 192,1212 | 
| C6.1212+ 1+4 = C6.1212+ 1+4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.121ES+(2,2) | 192,1213 | 
| C6.1222+ 1+4 = C6.1222+ 1+4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.122ES+(2,2) | 192,1217 | 
| C6.1232+ 1+4 = C6.852- 1+4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.123ES+(2,2) | 192,1224 | 
| C6.1242+ 1+4 = C42⋊20D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.124ES+(2,2) | 192,1233 | 
| C6.1252+ 1+4 = D12⋊10D4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.125ES+(2,2) | 192,1235 | 
| C6.1262+ 1+4 = C42⋊22D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.126ES+(2,2) | 192,1237 | 
| C6.1272+ 1+4 = C42.143D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.127ES+(2,2) | 192,1240 | 
| C6.1282+ 1+4 = C42.144D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.128ES+(2,2) | 192,1241 | 
| C6.1292+ 1+4 = C42⋊24D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.129ES+(2,2) | 192,1242 | 
| C6.1302+ 1+4 = C42.148D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.130ES+(2,2) | 192,1248 | 
| C6.1312+ 1+4 = D12⋊7Q8 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.131ES+(2,2) | 192,1249 | 
| C6.1322+ 1+4 = C42.150D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.132ES+(2,2) | 192,1251 | 
| C6.1332+ 1+4 = C42.153D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.133ES+(2,2) | 192,1254 | 
| C6.1342+ 1+4 = C42.155D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.134ES+(2,2) | 192,1256 | 
| C6.1352+ 1+4 = C42.157D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.135ES+(2,2) | 192,1258 | 
| C6.1362+ 1+4 = C42.158D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.136ES+(2,2) | 192,1259 | 
| C6.1372+ 1+4 = C42⋊25D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.137ES+(2,2) | 192,1263 | 
| C6.1382+ 1+4 = C42⋊26D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.138ES+(2,2) | 192,1264 | 
| C6.1392+ 1+4 = C42.161D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.139ES+(2,2) | 192,1266 | 
| C6.1402+ 1+4 = C42.163D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.140ES+(2,2) | 192,1268 | 
| C6.1412+ 1+4 = C42.164D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.141ES+(2,2) | 192,1269 | 
| C6.1422+ 1+4 = C42⋊27D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.142ES+(2,2) | 192,1270 | 
| C6.1432+ 1+4 = C42.165D6 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.143ES+(2,2) | 192,1271 | 
| C6.1442+ 1+4 = C6.1442+ 1+4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.144ES+(2,2) | 192,1386 | 
| C6.1452+ 1+4 = C6.1452+ 1+4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.145ES+(2,2) | 192,1388 | 
| C6.1462+ 1+4 = C6.1462+ 1+4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 48 |  | C6.146ES+(2,2) | 192,1389 | 
| C6.1472+ 1+4 = C6.1082- 1+4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.147ES+(2,2) | 192,1392 | 
| C6.1482+ 1+4 = C6.1482+ 1+4 | φ: 2+ 1+4/C4○D4 → C2 ⊆ Aut C6 | 96 |  | C6.148ES+(2,2) | 192,1393 | 
| C6.1492+ 1+4 = C3×C22.11C24 | central extension (φ=1) | 48 |  | C6.149ES+(2,2) | 192,1407 | 
| C6.1502+ 1+4 = C3×C23.33C23 | central extension (φ=1) | 96 |  | C6.150ES+(2,2) | 192,1409 | 
| C6.1512+ 1+4 = C3×C23⋊3D4 | central extension (φ=1) | 48 |  | C6.151ES+(2,2) | 192,1423 | 
| C6.1522+ 1+4 = C3×C22.29C24 | central extension (φ=1) | 48 |  | C6.152ES+(2,2) | 192,1424 | 
| C6.1532+ 1+4 = C3×C22.31C24 | central extension (φ=1) | 96 |  | C6.153ES+(2,2) | 192,1426 | 
| C6.1542+ 1+4 = C3×C22.32C24 | central extension (φ=1) | 48 |  | C6.154ES+(2,2) | 192,1427 | 
| C6.1552+ 1+4 = C3×C22.33C24 | central extension (φ=1) | 96 |  | C6.155ES+(2,2) | 192,1428 | 
| C6.1562+ 1+4 = C3×C22.34C24 | central extension (φ=1) | 96 |  | C6.156ES+(2,2) | 192,1429 | 
| C6.1572+ 1+4 = C3×C22.36C24 | central extension (φ=1) | 96 |  | C6.157ES+(2,2) | 192,1431 | 
| C6.1582+ 1+4 = C3×C23⋊2Q8 | central extension (φ=1) | 48 |  | C6.158ES+(2,2) | 192,1432 | 
| C6.1592+ 1+4 = C3×C23.41C23 | central extension (φ=1) | 96 |  | C6.159ES+(2,2) | 192,1433 | 
| C6.1602+ 1+4 = C3×D42 | central extension (φ=1) | 48 |  | C6.160ES+(2,2) | 192,1434 | 
| C6.1612+ 1+4 = C3×D4⋊5D4 | central extension (φ=1) | 48 |  | C6.161ES+(2,2) | 192,1435 | 
| C6.1622+ 1+4 = C3×Q8⋊6D4 | central extension (φ=1) | 96 |  | C6.162ES+(2,2) | 192,1439 | 
| C6.1632+ 1+4 = C3×C22.45C24 | central extension (φ=1) | 48 |  | C6.163ES+(2,2) | 192,1440 | 
| C6.1642+ 1+4 = C3×C22.47C24 | central extension (φ=1) | 96 |  | C6.164ES+(2,2) | 192,1442 | 
| C6.1652+ 1+4 = C3×D4⋊3Q8 | central extension (φ=1) | 96 |  | C6.165ES+(2,2) | 192,1443 | 
| C6.1662+ 1+4 = C3×C22.49C24 | central extension (φ=1) | 96 |  | C6.166ES+(2,2) | 192,1444 | 
| C6.1672+ 1+4 = C3×Q82 | central extension (φ=1) | 192 |  | C6.167ES+(2,2) | 192,1447 | 
| C6.1682+ 1+4 = C3×C22.53C24 | central extension (φ=1) | 96 |  | C6.168ES+(2,2) | 192,1448 | 
| C6.1692+ 1+4 = C3×C22.54C24 | central extension (φ=1) | 48 |  | C6.169ES+(2,2) | 192,1449 | 
| C6.1702+ 1+4 = C3×C24⋊C22 | central extension (φ=1) | 48 |  | C6.170ES+(2,2) | 192,1450 | 
| C6.1712+ 1+4 = C3×C22.56C24 | central extension (φ=1) | 96 |  | C6.171ES+(2,2) | 192,1451 | 
| C6.1722+ 1+4 = C3×C22.57C24 | central extension (φ=1) | 96 |  | C6.172ES+(2,2) | 192,1452 |