Copied to
clipboard

G = D12:11D4order 192 = 26·3

4th semidirect product of D12 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12:11D4, C42:29D6, C6.772+ 1+4, C3:4D42, C4:2(S3xD4), D6:8(C2xD4), C12:3(C2xD4), (C2xD4):26D6, C4:1D4:7S3, (C4xD12):49C2, C23:2D6:27C2, D6:3D4:36C2, (C4xC12):27C22, D6:C4:70C22, (C6xD4):33C22, C6.95(C22xD4), (C2xC6).261C24, C4:Dic3:74C22, C2.81(D4:6D6), (C2xC12).509C23, (S3xC23):13C22, (C22xC6).75C23, C23.77(C22xS3), (C2xD12).269C22, C6.D4:37C22, C22.282(S3xC23), (C22xS3).229C23, (C2xDic3).136C23, (C2xS3xD4):20C2, C2.68(C2xS3xD4), (C3xC4:1D4):8C2, (S3xC2xC4):29C22, (C2xC3:D4):27C22, (C2xC4).214(C22xS3), SmallGroup(192,1276)

Series: Derived Chief Lower central Upper central

C1C2xC6 — D12:11D4
C1C3C6C2xC6C22xS3S3xC23C2xS3xD4 — D12:11D4
C3C2xC6 — D12:11D4
C1C22C4:1D4

Generators and relations for D12:11D4
 G = < a,b,c,d | a12=b2=c4=d2=1, bab=a-1, ac=ca, dad=a7, cbc-1=a6b, bd=db, dcd=c-1 >

Subgroups: 1376 in 428 conjugacy classes, 115 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, C2xC4, D4, C23, C23, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C22xC4, C2xD4, C2xD4, C24, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C4xD4, C22wrC2, C4:D4, C4:1D4, C22xD4, C4:Dic3, D6:C4, C6.D4, C4xC12, S3xC2xC4, C2xD12, S3xD4, C2xC3:D4, C6xD4, S3xC23, D42, C4xD12, C23:2D6, D6:3D4, C3xC4:1D4, C2xS3xD4, D12:11D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C22xS3, C22xD4, 2+ 1+4, S3xD4, S3xC23, D42, C2xS3xD4, D4:6D6, D12:11D4

Smallest permutation representation of D12:11D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 38)(2 37)(3 48)(4 47)(5 46)(6 45)(7 44)(8 43)(9 42)(10 41)(11 40)(12 39)(13 27)(14 26)(15 25)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 30)(23 29)(24 28)
(1 25 39 22)(2 26 40 23)(3 27 41 24)(4 28 42 13)(5 29 43 14)(6 30 44 15)(7 31 45 16)(8 32 46 17)(9 33 47 18)(10 34 48 19)(11 35 37 20)(12 36 38 21)
(1 48)(2 43)(3 38)(4 45)(5 40)(6 47)(7 42)(8 37)(9 44)(10 39)(11 46)(12 41)(13 16)(14 23)(15 18)(17 20)(19 22)(21 24)(25 34)(26 29)(27 36)(28 31)(30 33)(32 35)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,38)(2,37)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,42)(10,41)(11,40)(12,39)(13,27)(14,26)(15,25)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28), (1,25,39,22)(2,26,40,23)(3,27,41,24)(4,28,42,13)(5,29,43,14)(6,30,44,15)(7,31,45,16)(8,32,46,17)(9,33,47,18)(10,34,48,19)(11,35,37,20)(12,36,38,21), (1,48)(2,43)(3,38)(4,45)(5,40)(6,47)(7,42)(8,37)(9,44)(10,39)(11,46)(12,41)(13,16)(14,23)(15,18)(17,20)(19,22)(21,24)(25,34)(26,29)(27,36)(28,31)(30,33)(32,35)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,38)(2,37)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,42)(10,41)(11,40)(12,39)(13,27)(14,26)(15,25)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28), (1,25,39,22)(2,26,40,23)(3,27,41,24)(4,28,42,13)(5,29,43,14)(6,30,44,15)(7,31,45,16)(8,32,46,17)(9,33,47,18)(10,34,48,19)(11,35,37,20)(12,36,38,21), (1,48)(2,43)(3,38)(4,45)(5,40)(6,47)(7,42)(8,37)(9,44)(10,39)(11,46)(12,41)(13,16)(14,23)(15,18)(17,20)(19,22)(21,24)(25,34)(26,29)(27,36)(28,31)(30,33)(32,35) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,38),(2,37),(3,48),(4,47),(5,46),(6,45),(7,44),(8,43),(9,42),(10,41),(11,40),(12,39),(13,27),(14,26),(15,25),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,30),(23,29),(24,28)], [(1,25,39,22),(2,26,40,23),(3,27,41,24),(4,28,42,13),(5,29,43,14),(6,30,44,15),(7,31,45,16),(8,32,46,17),(9,33,47,18),(10,34,48,19),(11,35,37,20),(12,36,38,21)], [(1,48),(2,43),(3,38),(4,45),(5,40),(6,47),(7,42),(8,37),(9,44),(10,39),(11,46),(12,41),(13,16),(14,23),(15,18),(17,20),(19,22),(21,24),(25,34),(26,29),(27,36),(28,31),(30,33),(32,35)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H···2O 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E6F6G12A···12F
order122222222···23444444444666666612···12
size111144446···62222241212121222288884···4

39 irreducible representations

dim1111112222444
type++++++++++++
imageC1C2C2C2C2C2S3D4D6D62+ 1+4S3xD4D4:6D6
kernelD12:11D4C4xD12C23:2D6D6:3D4C3xC4:1D4C2xS3xD4C4:1D4D12C42C2xD4C6C4C2
# reps1244141816142

Matrix representation of D12:11D4 in GL6(F13)

100000
010000
000100
0012100
0000710
000086
,
1200000
0120000
0012100
000100
000063
0000107
,
1230000
810000
001000
000100
000063
000057
,
1200000
810000
0012000
0001200
0000710
000036

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,0,0,0,7,8,0,0,0,0,10,6],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,6,10,0,0,0,0,3,7],[12,8,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,5,0,0,0,0,3,7],[12,8,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,7,3,0,0,0,0,10,6] >;

D12:11D4 in GAP, Magma, Sage, TeX

D_{12}\rtimes_{11}D_4
% in TeX

G:=Group("D12:11D4");
// GroupNames label

G:=SmallGroup(192,1276);
// by ID

G=gap.SmallGroup(192,1276);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,1571,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^7,c*b*c^-1=a^6*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<