Copied to
clipboard

G = C6.1462+ 1+4order 192 = 26·3

55th non-split extension by C6 of 2+ 1+4 acting via 2+ 1+4/C4oD4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C6.1462+ 1+4, (C2xD4):45D6, (C2xC12):16D4, (C2xQ8):37D6, (C22xC4):34D6, C23:2D6:32C2, C12:3D4:30C2, C12:7D4:48C2, D6:C4:38C22, C12.430(C2xD4), (C6xD4):48C22, (C6xQ8):41C22, C2.70(D4oD12), (C22xD12):21C2, (C2xC6).316C24, C4:Dic3:66C22, C6.166(C22xD4), C12.23D4:32C2, (C2xC12).653C23, (C22xC12):32C22, C3:7(C22.29C24), (C4xDic3):45C22, (C2xD12).281C22, C23.26D6:39C2, (S3xC23).80C22, C23.222(C22xS3), (C22xC6).242C23, C22.325(S3xC23), (C22xS3).138C23, (C2xDic3).163C23, C6.D4.136C22, (C6xC4oD4):8C2, (C2xC4oD4):12S3, (C2xC4):7(C3:D4), (C2xC6).82(C2xD4), C4.33(C2xC3:D4), (C2xC3:D4):31C22, C2.39(C22xC3:D4), C22.24(C2xC3:D4), (C2xC4).251(C22xS3), SmallGroup(192,1389)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C6.1462+ 1+4
C1C3C6C2xC6C22xS3S3xC23C22xD12 — C6.1462+ 1+4
C3C2xC6 — C6.1462+ 1+4
C1C22C2xC4oD4

Generators and relations for C6.1462+ 1+4
 G = < a,b,c,d,e | a6=b4=e2=1, c2=a3, d2=a3b2, ab=ba, cac-1=dad-1=a-1, ae=ea, cbc-1=a3b-1, dbd-1=a3b, be=eb, cd=dc, ece=a3c, ede=a3b2d >

Subgroups: 1032 in 334 conjugacy classes, 111 normal (23 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C23, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, C22xS3, C22xC6, C22xC6, C42:C2, C22wrC2, C4:D4, C4.4D4, C4:1D4, C22xD4, C2xC4oD4, C4xDic3, C4:Dic3, D6:C4, C6.D4, C2xD12, C2xD12, C2xC3:D4, C22xC12, C22xC12, C6xD4, C6xD4, C6xQ8, C3xC4oD4, S3xC23, C22.29C24, C23.26D6, C12:7D4, C23:2D6, C12:3D4, C12.23D4, C22xD12, C6xC4oD4, C6.1462+ 1+4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C3:D4, C22xS3, C22xD4, 2+ 1+4, C2xC3:D4, S3xC23, C22.29C24, D4oD12, C22xC3:D4, C6.1462+ 1+4

Smallest permutation representation of C6.1462+ 1+4
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 12 17 43)(2 7 18 44)(3 8 13 45)(4 9 14 46)(5 10 15 47)(6 11 16 48)(19 41 26 34)(20 42 27 35)(21 37 28 36)(22 38 29 31)(23 39 30 32)(24 40 25 33)
(1 43 4 46)(2 48 5 45)(3 47 6 44)(7 13 10 16)(8 18 11 15)(9 17 12 14)(19 31 22 34)(20 36 23 33)(21 35 24 32)(25 39 28 42)(26 38 29 41)(27 37 30 40)
(1 29 14 19)(2 28 15 24)(3 27 16 23)(4 26 17 22)(5 25 18 21)(6 30 13 20)(7 33 47 37)(8 32 48 42)(9 31 43 41)(10 36 44 40)(11 35 45 39)(12 34 46 38)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 42)(8 37)(9 38)(10 39)(11 40)(12 41)(13 28)(14 29)(15 30)(16 25)(17 26)(18 27)(31 46)(32 47)(33 48)(34 43)(35 44)(36 45)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,12,17,43)(2,7,18,44)(3,8,13,45)(4,9,14,46)(5,10,15,47)(6,11,16,48)(19,41,26,34)(20,42,27,35)(21,37,28,36)(22,38,29,31)(23,39,30,32)(24,40,25,33), (1,43,4,46)(2,48,5,45)(3,47,6,44)(7,13,10,16)(8,18,11,15)(9,17,12,14)(19,31,22,34)(20,36,23,33)(21,35,24,32)(25,39,28,42)(26,38,29,41)(27,37,30,40), (1,29,14,19)(2,28,15,24)(3,27,16,23)(4,26,17,22)(5,25,18,21)(6,30,13,20)(7,33,47,37)(8,32,48,42)(9,31,43,41)(10,36,44,40)(11,35,45,39)(12,34,46,38), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,42)(8,37)(9,38)(10,39)(11,40)(12,41)(13,28)(14,29)(15,30)(16,25)(17,26)(18,27)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,12,17,43)(2,7,18,44)(3,8,13,45)(4,9,14,46)(5,10,15,47)(6,11,16,48)(19,41,26,34)(20,42,27,35)(21,37,28,36)(22,38,29,31)(23,39,30,32)(24,40,25,33), (1,43,4,46)(2,48,5,45)(3,47,6,44)(7,13,10,16)(8,18,11,15)(9,17,12,14)(19,31,22,34)(20,36,23,33)(21,35,24,32)(25,39,28,42)(26,38,29,41)(27,37,30,40), (1,29,14,19)(2,28,15,24)(3,27,16,23)(4,26,17,22)(5,25,18,21)(6,30,13,20)(7,33,47,37)(8,32,48,42)(9,31,43,41)(10,36,44,40)(11,35,45,39)(12,34,46,38), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,42)(8,37)(9,38)(10,39)(11,40)(12,41)(13,28)(14,29)(15,30)(16,25)(17,26)(18,27)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,12,17,43),(2,7,18,44),(3,8,13,45),(4,9,14,46),(5,10,15,47),(6,11,16,48),(19,41,26,34),(20,42,27,35),(21,37,28,36),(22,38,29,31),(23,39,30,32),(24,40,25,33)], [(1,43,4,46),(2,48,5,45),(3,47,6,44),(7,13,10,16),(8,18,11,15),(9,17,12,14),(19,31,22,34),(20,36,23,33),(21,35,24,32),(25,39,28,42),(26,38,29,41),(27,37,30,40)], [(1,29,14,19),(2,28,15,24),(3,27,16,23),(4,26,17,22),(5,25,18,21),(6,30,13,20),(7,33,47,37),(8,32,48,42),(9,31,43,41),(10,36,44,40),(11,35,45,39),(12,34,46,38)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,42),(8,37),(9,38),(10,39),(11,40),(12,41),(13,28),(14,29),(15,30),(16,25),(17,26),(18,27),(31,46),(32,47),(33,48),(34,43),(35,44),(36,45)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D···6I12A12B12C12D12E···12J
order122222222222344444444446666···61212121212···12
size11112244121212122222244121212122224···422224···4

42 irreducible representations

dim1111111122222244
type+++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D6D6D6C3:D42+ 1+4D4oD12
kernelC6.1462+ 1+4C23.26D6C12:7D4C23:2D6C12:3D4C12.23D4C22xD12C6xC4oD4C2xC4oD4C2xC12C22xC4C2xD4C2xQ8C2xC4C6C2
# reps1144221114331824

Matrix representation of C6.1462+ 1+4 in GL6(F13)

110000
1200000
0001200
0011200
0000012
0000112
,
240000
9110000
0010661
0073127
000037
0000610
,
240000
2110000
0061016
0037712
000073
0000106
,
240000
2110000
0001202
0012020
0001201
0012010
,
240000
9110000
0010110
0001011
0000120
0000012

G:=sub<GL(6,GF(13))| [1,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[2,9,0,0,0,0,4,11,0,0,0,0,0,0,10,7,0,0,0,0,6,3,0,0,0,0,6,12,3,6,0,0,1,7,7,10],[2,2,0,0,0,0,4,11,0,0,0,0,0,0,6,3,0,0,0,0,10,7,0,0,0,0,1,7,7,10,0,0,6,12,3,6],[2,2,0,0,0,0,4,11,0,0,0,0,0,0,0,12,0,12,0,0,12,0,12,0,0,0,0,2,0,1,0,0,2,0,1,0],[2,9,0,0,0,0,4,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,11,0,12,0,0,0,0,11,0,12] >;

C6.1462+ 1+4 in GAP, Magma, Sage, TeX

C_6._{146}2_+^{1+4}
% in TeX

G:=Group("C6.146ES+(2,2)");
// GroupNames label

G:=SmallGroup(192,1389);
// by ID

G=gap.SmallGroup(192,1389);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,184,675,570,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^4=e^2=1,c^2=a^3,d^2=a^3*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=a^3*b^-1,d*b*d^-1=a^3*b,b*e=e*b,c*d=d*c,e*c*e=a^3*c,e*d*e=a^3*b^2*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<