Copied to
clipboard

## G = C6.682+ 1+4order 192 = 26·3

### 68th non-split extension by C6 of 2+ 1+4 acting via 2+ 1+4/C2×D4=C2

Series: Derived Chief Lower central Upper central

 Derived series C1 — C2×C6 — C6.682+ 1+4
 Chief series C1 — C3 — C6 — C2×C6 — C22×S3 — S3×C23 — D6⋊D4 — C6.682+ 1+4
 Lower central C3 — C2×C6 — C6.682+ 1+4
 Upper central C1 — C22 — C22.D4

Generators and relations for C6.682+ 1+4
G = < a,b,c,d,e | a6=b4=c2=e2=1, d2=b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=a3b-1, bd=db, ebe=a3b, dcd-1=ece=a3c, ede=b2d >

Subgroups: 832 in 252 conjugacy classes, 91 normal (27 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C22≀C2, C4⋊D4, C22.D4, C22.D4, C422C2, C41D4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, C3×C22⋊C4, C3×C4⋊C4, S3×C2×C4, C2×D12, C2×D12, C2×C3⋊D4, C22×C12, C6×D4, S3×C23, C22.54C24, D6⋊D4, C23.9D6, Dic3⋊D4, C12⋊D4, C4⋊C4⋊S3, C127D4, C232D6, C123D4, C3×C22.D4, C6.682+ 1+4
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, 2+ 1+4, S3×C23, C22.54C24, D46D6, D4○D12, C6.682+ 1+4

Smallest permutation representation of C6.682+ 1+4
On 48 points
Generators in S48
```(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 25 10 34)(2 26 11 35)(3 27 12 36)(4 28 7 31)(5 29 8 32)(6 30 9 33)(13 40 22 43)(14 41 23 44)(15 42 24 45)(16 37 19 46)(17 38 20 47)(18 39 21 48)
(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 46)(38 47)(39 48)(40 43)(41 44)(42 45)
(1 19 10 16)(2 24 11 15)(3 23 12 14)(4 22 7 13)(5 21 8 18)(6 20 9 17)(25 46 34 37)(26 45 35 42)(27 44 36 41)(28 43 31 40)(29 48 32 39)(30 47 33 38)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)```

`G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,25,10,34)(2,26,11,35)(3,27,12,36)(4,28,7,31)(5,29,8,32)(6,30,9,33)(13,40,22,43)(14,41,23,44)(15,42,24,45)(16,37,19,46)(17,38,20,47)(18,39,21,48), (13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45), (1,19,10,16)(2,24,11,15)(3,23,12,14)(4,22,7,13)(5,21,8,18)(6,20,9,17)(25,46,34,37)(26,45,35,42)(27,44,36,41)(28,43,31,40)(29,48,32,39)(30,47,33,38), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)>;`

`G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,25,10,34)(2,26,11,35)(3,27,12,36)(4,28,7,31)(5,29,8,32)(6,30,9,33)(13,40,22,43)(14,41,23,44)(15,42,24,45)(16,37,19,46)(17,38,20,47)(18,39,21,48), (13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45), (1,19,10,16)(2,24,11,15)(3,23,12,14)(4,22,7,13)(5,21,8,18)(6,20,9,17)(25,46,34,37)(26,45,35,42)(27,44,36,41)(28,43,31,40)(29,48,32,39)(30,47,33,38), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48) );`

`G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,25,10,34),(2,26,11,35),(3,27,12,36),(4,28,7,31),(5,29,8,32),(6,30,9,33),(13,40,22,43),(14,41,23,44),(15,42,24,45),(16,37,19,46),(17,38,20,47),(18,39,21,48)], [(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,46),(38,47),(39,48),(40,43),(41,44),(42,45)], [(1,19,10,16),(2,24,11,15),(3,23,12,14),(4,22,7,13),(5,21,8,18),(6,20,9,17),(25,46,34,37),(26,45,35,42),(27,44,36,41),(28,43,31,40),(29,48,32,39),(30,47,33,38)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,37),(26,38),(27,39),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48)]])`

33 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 2G 2H 2I 3 4A ··· 4E 4F 4G 4H 4I 6A 6B 6C 6D 6E 6F 12A 12B 12C 12D 12E 12F 12G order 1 2 2 2 2 2 2 2 2 2 3 4 ··· 4 4 4 4 4 6 6 6 6 6 6 12 12 12 12 12 12 12 size 1 1 1 1 4 4 12 12 12 12 2 4 ··· 4 12 12 12 12 2 2 2 4 4 8 4 4 4 4 8 8 8

33 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 4 4 4 type + + + + + + + + + + + + + + + + + image C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 S3 D6 D6 D6 D6 2+ 1+4 D4⋊6D6 D4○D12 kernel C6.682+ 1+4 D6⋊D4 C23.9D6 Dic3⋊D4 C12⋊D4 C4⋊C4⋊S3 C12⋊7D4 C23⋊2D6 C12⋊3D4 C3×C22.D4 C22.D4 C22⋊C4 C4⋊C4 C22×C4 C2×D4 C6 C2 C2 # reps 1 2 2 2 2 2 2 1 1 1 1 3 2 1 1 3 2 4

Matrix representation of C6.682+ 1+4 in GL8(𝔽13)

 1 1 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
,
 0 0 10 7 0 0 0 0 0 0 6 3 0 0 0 0 3 6 0 0 0 0 0 0 7 10 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 1 12 12 5 0 0 0 0 1 0 0 0 0 0 0 0 3 10 0 1
,
 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 10 3 0 12
,
 0 0 12 0 0 0 0 0 0 0 1 1 0 0 0 0 12 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 12 0 0 0 0 0 0 0 12 1 1 8 0 0 0 0 10 0 3 12
,
 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 12 1 1 8 0 0 0 0 0 0 0 12

`G:=sub<GL(8,GF(13))| [1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,0,3,7,0,0,0,0,0,0,6,10,0,0,0,0,10,6,0,0,0,0,0,0,7,3,0,0,0,0,0,0,0,0,0,0,0,1,1,3,0,0,0,0,0,12,0,10,0,0,0,0,12,12,0,0,0,0,0,0,0,5,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,10,0,0,0,0,0,1,0,3,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,12,12,10,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,8,12],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,8,12] >;`

C6.682+ 1+4 in GAP, Magma, Sage, TeX

`C_6._{68}2_+^{1+4}`
`% in TeX`

`G:=Group("C6.68ES+(2,2)");`
`// GroupNames label`

`G:=SmallGroup(192,1225);`
`// by ID`

`G=gap.SmallGroup(192,1225);`
`# by ID`

`G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,219,184,1571,570,6278]);`
`// Polycyclic`

`G:=Group<a,b,c,d,e|a^6=b^4=c^2=e^2=1,d^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=a^3*b^-1,b*d=d*b,e*b*e=a^3*b,d*c*d^-1=e*c*e=a^3*c,e*d*e=b^2*d>;`
`// generators/relations`

׿
×
𝔽